Align Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate PP_2585 PP_2585 Alpha-ketoglutaric semialdehyde dehydrogenase
Query= reanno::pseudo6_N2E2:Pf6N2E2_612 (526 letters) >FitnessBrowser__Putida:PP_2585 Length = 526 Score = 779 bits (2011), Expect = 0.0 Identities = 394/519 (75%), Positives = 434/519 (83%) Query: 8 NYIGGARSAAGQTRLQSVDASTGEALPHDFIQATAEEVDAAAKAAAAAYPAYRSLSAVRR 67 N+I G S G L S+DA TGE LP+ F QAT +EV+AAA+AA AYP+YRS +R Sbjct: 8 NHIAGQLSGHGDVLLHSLDAHTGETLPYAFHQATGDEVEAAAQAAEVAYPSYRSTRPDQR 67 Query: 68 AEFLEAIADELDALGDEFVAVVCRETALPAARIQGERGRTSGQMRLFAKVLRRGDFYGAR 127 A FL+AIA ELDALGD+F+ V RETALP ARI+GER RTS Q+RLFA+V+RRGDFY AR Sbjct: 68 AAFLDAIASELDALGDDFIQDVMRETALPEARIRGERSRTSNQLRLFAEVVRRGDFYAAR 127 Query: 128 IDRALPERTPLPRPDLRQYRIGLGPVAVFGASNFPLAFSTAGGDTASALAAGCPVVFKAH 187 IDRALP+RTPLPRPDLRQYRIG+GPVAVFGASNFPLAFSTAGGDTASALAAGCPVVFKAH Sbjct: 128 IDRALPQRTPLPRPDLRQYRIGVGPVAVFGASNFPLAFSTAGGDTASALAAGCPVVFKAH 187 Query: 188 SGHMATAEHVADAIIRAAEKTLMPAGVFNMIYGGGVGEWLVKHPAIQAVGFTGSLKGGRA 247 SGHM TA HVA AI RA + MPAGVFNMIYG GVGE LVKHPAIQAVGFTGSL+GGRA Sbjct: 188 SGHMLTAAHVAAAIDRAVTGSGMPAGVFNMIYGAGVGEALVKHPAIQAVGFTGSLRGGRA 247 Query: 248 LCDMAAARPQPIPVFAEMSSINPVIVLPQALETRAESVARDLTASVVQGCGQFCTNPGLV 307 LCDMAAARPQPIPVFAEMSSINPV+VLPQAL+ R E VA +L ASVV GCGQFCTNPGLV Sbjct: 248 LCDMAAARPQPIPVFAEMSSINPVVVLPQALQARGEQVATELAASVVLGCGQFCTNPGLV 307 Query: 308 IGIRSPQFTAFTQQVAALIGDQAPQTMLNAGTLQSYGKGLQKLLAHPGIEHLAGRQQQGN 367 +GIRSP F F Q + A + DQ PQTMLNAGTL+SY +Q LLAHPGI+HLAG+ Q GN Sbjct: 308 VGIRSPHFEHFLQTLVARMADQGPQTMLNAGTLRSYQNAVQHLLAHPGIQHLAGQPQTGN 367 Query: 368 QAQPQLFKADASLLINGDEALQEEVFGPTTVFVEVADQAQLTAALNGLHGQLTATMIGEP 427 QAQPQLFKAD SLL+NGD LQEEVFGP TV VEVAD QL AL L GQLTAT+I EP Sbjct: 368 QAQPQLFKADVSLLLNGDPLLQEEVFGPCTVVVEVADAQQLAEALRHLQGQLTATLIAEP 427 Query: 428 ADFERFSELTPLLEQKVGRILLNGYPTGVEVCDSMVHGGPYPATSDARGTSVGTLAIDRF 487 D F+ L PLLE+K GR+LLNGYPTGVEV D+MVHGGPYPATSDARGTSVGTLAIDRF Sbjct: 428 DDLRTFASLVPLLERKAGRLLLNGYPTGVEVSDAMVHGGPYPATSDARGTSVGTLAIDRF 487 Query: 488 LRPVCFQNYPDSLLPEPLKNANPLGILRLVDGVPGREAL 526 LRPVCFQNYPD+LLP+ LKNANPLGI RL++GV REA+ Sbjct: 488 LRPVCFQNYPDALLPDALKNANPLGIARLLEGVSSREAV 526 Lambda K H 0.319 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 980 Number of extensions: 33 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 526 Length of database: 526 Length adjustment: 35 Effective length of query: 491 Effective length of database: 491 Effective search space: 241081 Effective search space used: 241081 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory