Align Aspartate-proton symporter; L-aspartate transporter (characterized)
to candidate PP_1259 PP_1259 Aspartate-proton symporter
Query= SwissProt::O07002 (520 letters) >FitnessBrowser__Putida:PP_1259 Length = 537 Score = 665 bits (1717), Expect = 0.0 Identities = 302/508 (59%), Positives = 405/508 (79%), Gaps = 1/508 (0%) Query: 5 GNFQKSMSLFDLILIGMGAIFGSAWLFAVSNVASKAGPSGAFSWILGGAIILLIGLVYAE 64 G F+K +SL DL IG+GAIFGS WLFA S+V++ AGP+G SW LGG +LL+G+VY E Sbjct: 3 GKFKKQLSLLDLTFIGLGAIFGSGWLFAASHVSAIAGPAGILSWFLGGFAVLLLGIVYCE 62 Query: 65 LGAALPRTGGIIRYPVYSHGHLVGYLISFVTIVAYTSLISIEVTAVRQYVAYWFPGLTIK 124 LGAALPR GG++RYPVYSHG L+GYL+ F+T++A++SLI+IEV A RQY A WFPGLT Sbjct: 63 LGAALPRAGGVVRYPVYSHGPLLGYLMGFITLIAFSSLIAIEVVASRQYAAAWFPGLTKA 122 Query: 125 GSDSPTISGWILQFALLCLFFLLNYWSVKTFAKANFIISIFKYIVPITIIIVLIFHFQPE 184 GS PT+ GW++QFALL LFF LNY SVKTFAKAN ++S+FK+IVP+ +I VL F+PE Sbjct: 123 GSSDPTVLGWLVQFALLGLFFFLNYRSVKTFAKANNLVSVFKFIVPLLVIGVLFTFFKPE 182 Query: 185 NLSVQGFAPFGFTGIQAAISTGGVMFAYLGLHPIVSVAGEVQNPKRNIPIALIICIIVST 244 N VQGFAPFG +G++ A+S GG++FAYLGL PI+SVA EV+NP+R IPIALI+ +++ST Sbjct: 183 NFEVQGFAPFGLSGVEMAVSAGGIIFAYLGLTPIISVASEVKNPQRTIPIALILSVLLST 242 Query: 245 IIYTVLQVTFIGAIPTETLKHGWPAIGREFSLPFKDIAVMLGLGWLATLVILDAILSPGG 304 IY +LQ+ F+G++PTE L +GW ++ +E +LP++DIA+ LG+GWLA LV+ DA++SP G Sbjct: 243 AIYALLQLAFLGSVPTEMLANGWASVTKELALPYRDIALALGVGWLAYLVVADAVISPSG 302 Query: 305 NGNIFMNTTSRLVYAWARNGTLFGIFSKVNKDTGTPRASLWLSFALSIFWTLPFPSWNAL 364 GNI+MN T R++Y WA+ GT F F++++ ++G PR +LWL+F LS+FWTLPFPSW AL Sbjct: 303 CGNIYMNATPRVIYGWAQTGTFFKYFTRIDAESGIPRPALWLTFGLSVFWTLPFPSWEAL 362 Query: 365 VNVCSVALILSYAIAPISSAALRVNAKDLNRPFYLKGMSIIGPLSFIFTAFIVYWSGWKT 424 +NV S AL+LSYA+AP+S AALR NA + RPF +KGM+++GPLSFI A IVYWSGW T Sbjct: 363 INVVSAALVLSYAVAPVSVAALRRNAPHMPRPFRVKGMTVLGPLSFIIAALIVYWSGWNT 422 Query: 425 VSWLLGSQLVMFLIYLCFSKYTPKEDVSLAQQLKSAWWLIGFYIMMLIFSYIGSFGHGLG 484 VSWLL Q+VMF++YL S++ P + +SL QQ++S+ WLIGFY + ++ S++GSFG GLG Sbjct: 423 VSWLLALQIVMFVLYLLCSRFVPTQHLSLGQQVRSSAWLIGFYALTILLSWLGSFG-GLG 481 Query: 485 IISNPVDLILVAIGSLAIYYWAKYTGLP 512 +I +P D ++VA +L IYYW TG+P Sbjct: 482 VIGHPFDTVVVAACALGIYYWGAATGVP 509 Lambda K H 0.328 0.143 0.451 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1022 Number of extensions: 44 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 537 Length adjustment: 35 Effective length of query: 485 Effective length of database: 502 Effective search space: 243470 Effective search space used: 243470 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory