Align Alpha-glycerophosphate oxidase; Glycerol-3-phosphate oxidase; EC 1.1.3.21 (characterized)
to candidate PP_1073 PP_1073 glycerol-3-phosphate dehydrogenase (aerobic)
Query= SwissProt::O86963 (609 letters) >FitnessBrowser__Putida:PP_1073 Length = 514 Score = 157 bits (398), Expect = 8e-43 Identities = 154/552 (27%), Positives = 247/552 (44%), Gaps = 91/552 (16%) Query: 13 QETAKTTYDVLIIGGGITGAGVAVQTAAAGMKTVLLEMQDFAEGTSSRSTKLVHGGIRYL 72 Q YD+ +IGGGI G G+A A G+K L E D A+ TSS S+KL+HGG+RYL Sbjct: 10 QPPTANCYDLAVIGGGINGVGIAADAAGRGLKVFLCEKDDLAQHTSSASSKLIHGGLRYL 69 Query: 73 KTFDVEVVADTVRERAIVQQIAPHIPKPDPMLLPIYDEPGATFSLFSVKVAMDLYDRLAN 132 + ++ +V + + ER ++ APHI KP +LP P + ++ + LYD L Sbjct: 70 EHYEFRLVREALAEREVLLAKAPHIVKPMRFVLP--HRPHLR-PAWMIRAGLFLYDHLG- 125 Query: 133 VTGSKYENYLLTKEEVLAREPQLQAENLVGGGV-YLDFRNNDARLVIENIKRAQADGAAM 191 + L L P + + G Y D +DARLV+ N A+ GA + Sbjct: 126 ------KRKRLGASRSLRFGPGYPLKPAITRGFEYADCAVDDARLVVLNAMAARELGAHI 179 Query: 192 ISKAKVVGILHDEQGIINGV-EVEDQLTNERFE-VHAKVVINTTGPWSDIVRQLDKNDEL 249 ++ + L E+ + G+ +VE Q + + +HA+ ++N GPW + D + Sbjct: 180 RTRTR---CLRAER--VEGLWQVELQHADGSLQTIHARALVNAAGPWVASFIKDDLKLDA 234 Query: 250 PPQMRPTKGVHLVVDREKLKVPQPTYFDTGKNDGRMVFVVPRENK-TYFGTTDTDYTGDF 308 P +R +G H++V R L + Y D R+VF +P ++ T GTTD +Y+GD Sbjct: 235 PYGIRLIQGSHIIVPR--LYEGEHAYI-LQNEDQRIVFCIPYLDRFTLIGTTDREYSGDP 291 Query: 309 AHPTVTQEDVDYLLTIVNERFPHAQITLDDIEASWAGLRPLITNNGGSDYNGGGKGKLSD 368 A +T+++ YLL +VNE F H Q++ DI +++G+RPL +D Sbjct: 292 AAVAITEQETHYLLKVVNEHFNH-QLSQADILHTYSGVRPL----------------CND 334 Query: 369 ESFEQIVESVKEYLADERQRPVVEKAVKQAQERVEASKVDPSQVSRGSSLERSKD----G 424 ES +PS V+R +L S + Sbjct: 335 ES------------------------------------DNPSAVTRDYTLALSAEVGQAP 358 Query: 425 LLTLAGGKITDYRLMAEGAVKRINELLQESGASFELVDSTTYPVSGGELDAANVEEELAK 484 LL++ GGK+T YR +AE A+ + + A + + + P+ G E V+ + Sbjct: 359 LLSVFGGKLTTYRKLAESAMAELKPFFTQMRAPW----TASAPLPGAE-GMTTVQALIDA 413 Query: 485 LADQAQTAGFNEAAATYLAHLYGSNLPQVLNYKTKFEGLDEKESTAL-----NYSLHEEM 539 + + + A L YGS + ++L+ E L + L +Y L EE Sbjct: 414 VLARCGWLPVDLAKRWVLT--YGSRVWRLLDGVHGPEDLGQAIGAGLFTREVDYLLEEEW 471 Query: 540 VLTPVDYLLRRT 551 D + RRT Sbjct: 472 AEQTADIIWRRT 483 Lambda K H 0.314 0.132 0.368 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 535 Number of extensions: 25 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 609 Length of database: 514 Length adjustment: 36 Effective length of query: 573 Effective length of database: 478 Effective search space: 273894 Effective search space used: 273894 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.9 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory