Align Alpha-aminoadipic semialdehyde dehydrogenase; Alpha-AASA dehydrogenase; Aldehyde dehydrogenase family 7 member A1; Antiquitin-1; Betaine aldehyde dehydrogenase; Delta1-piperideine-6-carboxylate dehydrogenase; P6c dehydrogenase; EC 1.2.1.31; EC 1.2.1.3; EC 1.2.1.8 (characterized)
to candidate PP_3646 PP_3646 Aldehyde dehydrogenase family protein
Query= SwissProt::Q64057 (539 letters) >FitnessBrowser__Putida:PP_3646 Length = 493 Score = 219 bits (557), Expect = 2e-61 Identities = 154/480 (32%), Positives = 234/480 (48%), Gaps = 12/480 (2%) Query: 56 NGSW--GGRGEVITTYCPANNEPIARVRQASMKDYEETIGKAKKAWN--IWADIPAPKRG 111 +G W G+ + PA + A++ A D E + A++A++ W I A RG Sbjct: 11 DGQWRDAQSGKTFDSLNPATAQAWAQLPDADEADVELAVQAAQRAFDSKAWRSITATARG 70 Query: 112 EIVRKIGDALREKIQLLGRLVSLEMGKILVEGIGEVQEYVDVCDYAAGLSRMIGGPTLPS 171 +++R++GD + E + L +L S + GK++ E G+V + Y AGL+ + G TLP Sbjct: 71 KLLRRLGDLIAENKEHLAQLESRDNGKLIRETRGQVGYLPEFFHYTAGLADKLEGGTLPL 130 Query: 172 ERPGHALMEQWNPLGLVGIITAFNFPVAVFGWNNAIALITGNVCLWKGAPTTSLVSIAVT 231 ++P P+G+V I +N P+ + A AL GN + K + S + + Sbjct: 131 DKPDLFAYTVHEPIGVVAGIIPWNSPLYLTAIKLAPALAAGNTIVLKPSEHASATILELA 190 Query: 232 KIIAKVLEDNLLPGAICSLTCGGADMGTAMARDERVNLLSFTGSTQVGKQVALMVQERFG 291 ++ LE G + +T G G A+ R V ++FTG + V E F Sbjct: 191 RL---ALEAGFPAGVVNVVTGYGPSTGAALTRHPLVRKIAFTGGAATARHVVRSSAENFA 247 Query: 292 KSLLELGGNNAIIAFEDADLSLVLPSALFAAVGTAGQRCTTVRRLFLHESIHDEVVDRLK 351 K LELGG + I F DADL + A+ +GQ C RL + + I DE V+RL Sbjct: 248 KLSLELGGKSPNIIFADADLDSAINGAVAGIYAASGQSCVAGSRLLVQDEIFDEFVERLI 307 Query: 352 NAYSQIRVGNPWDPNILYGPLHTKQAVSMFVQAVEEAKKEGGTVVYGGKVMDHPGN--YV 409 +IR+GNP D GP+ T Q +++ V AK EG + GGK D G+ + Sbjct: 308 ARAKRIRIGNPQDDASEMGPMATAQQLAVVEGLVAAAKAEGAKLHMGGKRADVEGDGWFY 367 Query: 410 EPTIVTGLVHDAPIVHKETFAPILYVFKFKNEEEVFEWNNEVKQGLSSSIFTKDLGRIFR 469 EPT+ + I+ +E F P+ V +FK EEE N+ + GL++ I+T+DLGR R Sbjct: 368 EPTLFECDSNAMTIMQEEVFGPVAAVIRFKTEEEALAMANDSQFGLAAGIWTRDLGRAHR 427 Query: 470 WLGPKGSDCGIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQYMRRSTCTINYSTA 529 S GI+ VN + + + GG K++G GRESG D+ Y T IN STA Sbjct: 428 LARDVRS--GIIWVNTYRAVSAM-APIGGFKNSGYGRESGIDSVLAYTELKTVWINLSTA 484 Lambda K H 0.319 0.137 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 628 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 493 Length adjustment: 35 Effective length of query: 504 Effective length of database: 458 Effective search space: 230832 Effective search space used: 230832 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory