Align D-2-hydroxyglutarate--pyruvate transhydrogenase DLD2; D-2HG--pyruvate transhydrogenase DLD2; Actin-interacting protein 2; D-lactate dehydrogenase [cytochrome] 2, mitochondrial; D-lactate ferricytochrome C oxidoreductase; D-LCR; EC 1.1.99.40; EC 1.1.2.4 (characterized)
to candidate PP_5154 PP_5154 putative Oxidoreductase, FAD-binding
Query= SwissProt::P46681 (530 letters) >FitnessBrowser__Putida:PP_5154 Length = 455 Score = 293 bits (750), Expect = 9e-84 Identities = 160/449 (35%), Positives = 256/449 (57%), Gaps = 21/449 (4%) Query: 87 LSFYNEDWMRKYKGQSKLVLRPKSVEKVSLILNYCNDEKIAVVPQGGNTGLVGGSVPIFD 146 L Y +DW + Y ++ PK++E+V I+++ N K+A+VP GG TGL G+V Sbjct: 16 LEAYGKDWTKHYPPAPSAIVFPKTIEQVQAIVHWANAHKVALVPSGGRTGLSAGAVAANG 75 Query: 147 ELILSLANLNKIRDFDPVSGILKCDAGVILENANNYVMEQNYMFPLDLGAKGSCHVGGVV 206 E++++ +N+I F+ + C GV+ Y EQ +P+D + GS +GG + Sbjct: 76 EVVVAFDYMNQILGFNAFDRTVVCQPGVVTRQLQTYAEEQGLYYPVDFASSGSSQIGGNI 135 Query: 207 ATNAGGLRLLRYGSLHGSVLGLEVVMPNGQIVNSMHSMRKDNTGYDLKQLFIGSEGTIGI 266 TNAGG++++RYG V GL+VV G+++ + K+ TGYDL+QLFIG+EGT+G Sbjct: 136 GTNAGGIKVIRYGMTRNWVAGLKVVTGKGELLELNKDLIKNATGYDLRQLFIGAEGTLGF 195 Query: 267 ITGVSILTVPKPKAFNVSYLSVESFEDVQKVFVRARQELSEILSAFEFMDAK--SQVLAK 324 + ++ P+ L F+ + V + +L L+AFEF K +++LA+ Sbjct: 196 VVEATMRLDRAPRNLTAMVLGTPDFDSIMPVLHAFQGKLD--LTAFEFFSDKGLAKILAR 253 Query: 325 SQLKDAAFPLEDEHPFYILIETSGSNKDHDDSKLETFLENVMEEGIVTDGVVAQDETELQ 384 D P + PFY L+E S +D + L TF E+ +E+G V DGV++Q E++L+ Sbjct: 254 G---DVPAPFATDCPFYALLEFEASTEDVANEALATF-EHCVEQGWVLDGVMSQSESQLK 309 Query: 385 NLWKWREMIPEASQANGGVYKYDVSLPLKDLYSLVEATNARLSEAELVGDSPKPVVGAIG 444 NLWK RE + E + ++ YK D+S+ + + + + +A +SE P + Sbjct: 310 NLWKLREYLSE-TISHWTPYKNDISVTVSKVPAFLRDIDAIVSE-------HYPDYEVVW 361 Query: 445 YGHVGDGNLHLNVAVREYNKNIE-----KTLEPFVYEFVSSKHGSVSAEHGLGFQKKNYI 499 YGH+GDGNLHLN+ E+ + + +V+E V +GS+SAEHG+G K++Y+ Sbjct: 362 YGHIGDGNLHLNILKPEHMSKDDFFASCAKVNKWVFEIVERYNGSISAEHGVGMTKRDYL 421 Query: 500 GYSKSPEEVKMMKDLKVHYDPNGILNPYK 528 GYS+SPEE+ MK +K +DPNGI+NP K Sbjct: 422 GYSRSPEEIACMKAIKAVFDPNGIMNPGK 450 Lambda K H 0.316 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 538 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 530 Length of database: 455 Length adjustment: 34 Effective length of query: 496 Effective length of database: 421 Effective search space: 208816 Effective search space used: 208816 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory