Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate PP_2759 PP_2759 ribose ABC transporter - ATP-binding subunit
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__Putida:PP_2759 Length = 512 Score = 334 bits (856), Expect = 5e-96 Identities = 200/503 (39%), Positives = 298/503 (59%), Gaps = 11/503 (2%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 +L++ + K+F RALD L V G VH L+GENGAGKSTLIK+L+ H DAG++ Sbjct: 5 VLELRGIVKTFGATRALDGASLRVAAGSVHGLVGENGAGKSTLIKVLAGIHRPDAGSLLL 64 Query: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLRADAQ 122 GQ +P + ++LGI I+QE L +V E ++ G E R L+D + +A Sbjct: 65 DGQP-HGHFSPRQVERLGIGFIHQERLLPARFTVGEALFFGHERRFGPLLDRRSQQREAA 123 Query: 123 ALLND-LGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 LL+D GL L +A + L+ AEQQMV+I +A+ + R+++ DEP+ AL REV+RL Sbjct: 124 RLLDDYFGLRLPANALIGELSSAEQQMVQIVRALLIKPRVLVFDEPSVALVQREVERLLR 183 Query: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 I+ L+ ++++Y+SH L E++A+CDR TV+R+GR VA + + + RLMV R V Sbjct: 184 IVQRLRDDGLAIVYISHYLQEIEALCDRVTVLRNGRDVAEVSPRNTSLEQITRLMVNREV 243 Query: 242 EFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTDL 301 K P GA++L V G+ A + + R GEIVGL GLVG+G +L Sbjct: 244 GELYPKVAVPAGALLLDVRGLGRARA-------YQGIDLQVRRGEIVGLTGLVGSGAKEL 296 Query: 302 ARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNLSLP 361 R +FG P +G V +D +PL LRSPR+A+ G+ L+PE+R++QG LD S++ N +L Sbjct: 297 LRSLFGLAPPDSGEVRLDGQPLSLRSPREAVAQGVALMPEERRRQGVALDLSVQENTTLA 356 Query: 362 SLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALTP 421 +L LG R +E ++LRIK A + +LSGGNQQKV L + A Sbjct: 357 ALSRFVRLGLLSPARERHTTLELI-ERLRIKAHGAHAKVRQLSGGNQQKVALAKWFARCS 415 Query: 422 KVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVIV 481 + ++DEP+ GID+GAK E+++++ +L G V+++SS+L E++ + DRI V G I Sbjct: 416 SLYLLDEPSVGIDVGAKVEIYRLIGELVKEGAGVLILSSDLPELIGLCDRIHVMHRGAIA 475 Query: 482 ADLDAQTATEEGLMAYMATGTDR 504 A A A + L+A +ATG R Sbjct: 476 ARFAAGEANSDRLLA-VATGAQR 497 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 680 Number of extensions: 41 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 512 Length adjustment: 35 Effective length of query: 480 Effective length of database: 477 Effective search space: 228960 Effective search space used: 228960 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory