Align Phenylacetate permease, Ppa (characterized)
to candidate PP_3272 PP_3272 acetate permease
Query= TCDB::O50471 (520 letters) >FitnessBrowser__Putida:PP_3272 Length = 520 Score = 982 bits (2538), Expect = 0.0 Identities = 508/520 (97%), Positives = 516/520 (99%) Query: 1 MNWTAISMFMVFVCFTLLVTRWAALRTRSASDFYTAGGGLTGMQNGLAIAGDMISAASFL 60 MNWTAISMFMVFVCFTLLVTRWAALRTRSASDFYTAGGGLTGMQNGLAIAGDMISAASFL Sbjct: 1 MNWTAISMFMVFVCFTLLVTRWAALRTRSASDFYTAGGGLTGMQNGLAIAGDMISAASFL 60 Query: 61 GISAMMFMNGYDGLLYALGVLAGWPIILFLIAERLRNLGKYTFADVVSYRLAQTPVRLTS 120 GISAMMFMNGYDGLLYALGVLAGWPIILFLIAERLRNLGKYTFADVVSYRLAQTPVRLTS Sbjct: 61 GISAMMFMNGYDGLLYALGVLAGWPIILFLIAERLRNLGKYTFADVVSYRLAQTPVRLTS 120 Query: 121 AFGTLVVALMYLVAQMVGAGKLIELLFGISYLYAVMLVGVLMVAYVTFGGMLATTWVQII 180 AFGTLVVALMYLVAQMVGAGKLIELLFGISYLYAVMLVGVLMV+YVTFGGMLATTWVQII Sbjct: 121 AFGTLVVALMYLVAQMVGAGKLIELLFGISYLYAVMLVGVLMVSYVTFGGMLATTWVQII 180 Query: 181 KAVMLLSGTSFMAFMVLKHFGFSTEAMFASAVAVHAKGQAIMAPGGLLSNPVDAISLGLG 240 KAVMLLSGTSFMAFMVLKHFGFSTEAMFASAVAVHAKGQAIMAPGGLLSNPVDAISLGLG Sbjct: 181 KAVMLLSGTSFMAFMVLKHFGFSTEAMFASAVAVHAKGQAIMAPGGLLSNPVDAISLGLG 240 Query: 241 MMFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYLLLIVIGFGAIVMVGTEPSYR 300 MMFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYLLLIV+GFGAIVMVGTEPSYR Sbjct: 241 MMFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYLLLIVVGFGAIVMVGTEPSYR 300 Query: 301 DATGAIIGGGNMIAVHLAQAVGGNLFLGFISAVAFATILAVVAGLALSGASAVSHDLYAC 360 DATGAIIGGGNM+AVHLAQAVGGNLFLGFISAVAFATILAVVAGLALSGASAVSHDLYAC Sbjct: 301 DATGAIIGGGNMVAVHLAQAVGGNLFLGFISAVAFATILAVVAGLALSGASAVSHDLYAC 360 Query: 361 VIRQGKATEQEEMRVSRIATLLIGLLAVLLGLMFESQNIAFLSGLVLAVAASVNFPVLLL 420 V+R+GKATEQEEMRVSRIATLLIGLLAV+LGLMFESQNIAFLSGLVLAVAASVNFPVLLL Sbjct: 361 VMRKGKATEQEEMRVSRIATLLIGLLAVILGLMFESQNIAFLSGLVLAVAASVNFPVLLL 420 Query: 421 SMFWKGLTTRGAVCGSMAGLASAVLLVVLGPAVWVNVLHHEKALFPYSNPALFSMSLAFL 480 SMFWKGLTTRGAVCGSMAGL SAVLLVVLGPAVWVNVLH+E ALFPYSNPALFSMSLAFL Sbjct: 421 SMFWKGLTTRGAVCGSMAGLVSAVLLVVLGPAVWVNVLHNETALFPYSNPALFSMSLAFL 480 Query: 481 SAWVFSVTDSSERASEERGRYLAQFIRSMTGIGAAGASKH 520 SAWVFSVTD+SERA EERGRYL QFIRSMTGIGAAGASKH Sbjct: 481 SAWVFSVTDTSERAVEERGRYLGQFIRSMTGIGAAGASKH 520 Lambda K H 0.328 0.139 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1078 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 520 Length adjustment: 35 Effective length of query: 485 Effective length of database: 485 Effective search space: 235225 Effective search space used: 235225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory