Align Aromatic amino acid:H+ symporter, AroP of 457 aas and 12 TMSs (Cosgriff and Pittard 1997). Transports phenylalanine, tyrosine and tryptophan (characterized)
to candidate PP_4495 PP_4495 aromatic amino acid transport protein
Query= TCDB::P15993 (457 letters) >FitnessBrowser__Putida:PP_4495 Length = 472 Score = 610 bits (1573), Expect = e-179 Identities = 303/458 (66%), Positives = 362/458 (79%), Gaps = 10/458 (2%) Query: 2 MEGQQ-HGEQLKRGLKNRHIQLIALGGAIGTGLFLGSASVIQSAGPGIILGYAIAGFIAF 60 M GQ H +LKRGLKNRHIQLIALGGAIGTGLFLGSA V++SAGP +ILGYAI GFIAF Sbjct: 1 MSGQNMHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVMKSAGPSMILGYAICGFIAF 60 Query: 61 LIMRQLGEMVVEEPVAGSFSHFAYKYWGSFAGFASGWNYWVLYVLVAMAELTAVGKYIQF 120 +IMRQLGEM+VEEPVAGSFSHFA+ YWG FAGF SGWN WVLY+LV M+EL+AVGKY+ + Sbjct: 61 MIMRQLGEMIVEEPVAGSFSHFAHTYWGGFAGFLSGWNCWVLYILVGMSELSAVGKYVHY 120 Query: 121 WYPEIPTWVSAAVFFVVINAINLTNVKVFGEMEFWFAIIKVIAVVAMIIFGGWLLFSGNG 180 W+PEIPTWV+AA FFV+INAINL NVK FGE EFWFAIIKV+A+V+MI G +LL SG+G Sbjct: 121 WWPEIPTWVTAAAFFVLINAINLMNVKFFGEAEFWFAIIKVVAIVSMIGLGAYLLTSGSG 180 Query: 181 GPQATVSNLWDQGGFLPHGFTGLVMMMAIIMFSFGGLELVGITAAEADNPEQSIPKATNQ 240 GP+ATV+NLW GGF P+G +GLVM +A IMFSFGGLE++G TAAEAD P+ IPKA NQ Sbjct: 181 GPEATVANLWTHGGFFPNGVSGLVMALAFIMFSFGGLEMLGFTAAEADKPKTVIPKAINQ 240 Query: 241 VIYRILIFYIGSLAVLLSLMPWTRVTAD---------TSPFVLIFHELGDTFVANALNIV 291 VIYRILIFY+G+L VLLSL PW + A +SPFV +F LG AN LN V Sbjct: 241 VIYRILIFYVGALVVLLSLTPWDNLVASIDASGGSYGSSPFVQVFSLLGSDVAANLLNFV 300 Query: 292 VLTAALSVYNSCVYCNSRMLFGLAQQGNAPKALASVDKRGVPVNTILVSALVTALCVLIN 351 VLTAALSVYNS YCN+RML G+A+QG+AP +LA VDKRGVPV +ILVSA VT + VL+N Sbjct: 301 VLTAALSVYNSGTYCNARMLLGMAEQGDAPASLAKVDKRGVPVRSILVSAAVTFVAVLLN 360 Query: 352 YLAPESAFGLLMALVVSALVINWAMISLAHMKFRRAKQEQGVVTRFPALLYPLGNWICLL 411 YL P++A LLM+LVV+ LVINWAMIS +H+KFR+ G F AL YP GN++ L Sbjct: 361 YLMPQNALELLMSLVVATLVINWAMISYSHLKFRQHLDRTGQKPLFKALWYPYGNYVVLA 420 Query: 412 FMAAVLVIMLMTPGMAISVYLIPVWLIVLGIGYLFKEK 449 F+ +L IMLM PG+ +SVY IPVWL+ + + Y+ K + Sbjct: 421 FVVLILGIMLMIPGIQVSVYAIPVWLLAMLVVYMVKSR 458 Lambda K H 0.328 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 682 Number of extensions: 27 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 457 Length of database: 472 Length adjustment: 33 Effective length of query: 424 Effective length of database: 439 Effective search space: 186136 Effective search space used: 186136 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory