Align 1-pyrroline-5-carboxylate dehydrogenase 2; P5C dehydrogenase 2; L-glutamate gamma-semialdehyde dehydrogenase; EC 1.2.1.88 (characterized)
to candidate PP_2694 PP_2694 Aldehyde dehydrogenase family protein
Query= SwissProt::P94391 (515 letters) >FitnessBrowser__Putida:PP_2694 Length = 480 Score = 261 bits (666), Expect = 5e-74 Identities = 161/469 (34%), Positives = 240/469 (51%), Gaps = 14/469 (2%) Query: 35 KDYPLVINGERVETEAKIVSINPADKEEVVGRVSKASQEHAEQAIQAAAKAFEEWRYTSP 94 K Y I+G+ E A + + +P+D +++G+ +AS E A QAIQAA A W + Sbjct: 4 KTYNNYIDGQWCEGHATLGNYSPSDTGDLIGQYHQASAEQARQAIQAARAAQPLWAASGL 63 Query: 95 EERAAVLFRAAAKVRRRKHEFSALLVKEAGKPWNEADADTAEAIDFMEYYARQMIELAKG 154 E R VL ++ RK E LL +E GKP E + + F YYA +++ Sbjct: 64 ESRQQVLMAIGDELIARKEELGELLSREEGKPLAEGIGEVNRSGQFFHYYAAEVLRQMGE 123 Query: 155 KPVNSREGEKNQYVYTPTGVTVVIPPWNFLFAIMAGTTVAPIVTGNTVVLKPASATPVIA 214 + R G + P GV +I PWNF A A + GN VV KPA+ P A Sbjct: 124 TAASVRPGVDIEVHREPVGVVGIITPWNFPMATAAWKIAPALAFGNAVVFKPANLVPASA 183 Query: 215 AKFVEVLEESGLPKGVVNFVPGSGAEVGDYLVDHPKTSLITFTGSREVGTRIFERAAKVQ 274 E++ GLP G N V GSGA+VG+ L+ + +TFTGS + G R+ A Sbjct: 184 WALTEIISRQGLPSGTFNLVMGSGADVGEALIQSAEIDALTFTGSLQTGRRVAVATA--- 240 Query: 275 PGQQHLKRVIAEMGGKDTVVVDEDADIELAAQSIFTSAFGFAGQKCSAGSRAVVHEKVYD 334 +L R EMG K+ +VV +DAD+ELA + AF GQKC+A SR +V + ++D Sbjct: 241 ---GNLVRCQLEMGSKNALVVMDDADLELAVECALNGAFFGTGQKCTASSRLIVCDGIHD 297 Query: 335 QVLERV-IEITESKVTAKPDSADVYMGPVIDQGSYDKIMSYIEIGKQEG-RLVSGGTGDD 392 + +E + + + + KV A V +GPV D ++ ++Y+++ + EG L+ GG Sbjct: 298 RFVEALRLRMRQLKV-GHALEAGVQIGPVADARQLEQNLAYLQLAQAEGATLIEGGERLQ 356 Query: 393 --SKGYFIKPTIFADLDPKARLMQEEIFGPVVAFCKVSDFDEALEVANNTEYGLTGAVIT 450 GY+++P +F + R+ +EE+FGP+ +V DF+EAL N+TEYGLT +IT Sbjct: 357 LACDGYYMRPALFINSRNDMRINREEVFGPIACVIRVRDFEEALATLNDTEYGLTAGIIT 416 Query: 451 NNRKHIERAKQEFHVGNLYFNRNCTGAIVGYH-PFGGFKMSGTDSKAGG 498 + +H K+ G + N G YH PFGG K S + G Sbjct: 417 QSLRHASHFKRRAQTGCVMVNLPTAG--TDYHVPFGGRKASSFGPREQG 463 Lambda K H 0.316 0.133 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 530 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 480 Length adjustment: 34 Effective length of query: 481 Effective length of database: 446 Effective search space: 214526 Effective search space used: 214526 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory