Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate PP_3553 PP_3553 AMP-binding domain protein
Query= BRENDA::A4YDR9 (549 letters) >FitnessBrowser__Putida:PP_3553 Length = 540 Score = 416 bits (1068), Expect = e-120 Identities = 223/536 (41%), Positives = 318/536 (59%), Gaps = 5/536 (0%) Query: 10 EGVDPTGSWYSVLTPLLFLERAGKYFKDKTAVVYRDSRYTYSTFYDNVMVQASALMRRGF 69 +G+ P + LTPL F+ER + + AV++ R + Y ASAL RG Sbjct: 6 QGLMPAAVNHVALTPLSFIERTAAVYGNYPAVIHGAIRRNWQETYQRCRRLASALAGRGI 65 Query: 70 SREDKLSFISRNRPEFLESFFGVPYAGGVLVPINFRLSPKEMAYIINHSDSKFVVVDEPY 129 R D ++ + N P LE+ FGVP G VL +N RL + +A+++ H ++K ++ D + Sbjct: 66 GRGDTVAVMLPNTPTMLEAHFGVPMTGAVLNTLNVRLDAEAIAFMLQHGEAKVLITDREF 125 Query: 130 LNSLLEVKDQIKAEIILLEDPDNPSASETARKEVRMTYRELVKGGSRDPLPIPAKEEYSM 189 ++++E + L+ D D+P E R ++ Y L+ G + +E+ Sbjct: 126 -HAVIEGALALLEHPPLVVDVDDPEYGE-GRAVSQLDYEALLNEGDPEFAWEWPDDEWQA 183 Query: 190 ITLYYTSGTTGLPKGVMHHHRGAFLNAMAEVLEHQMDLNSVYLWTLPMFHAASWGFSWAT 249 I+L YTSGTTG PKGV++HHRGA+LNA+ + M VYLWTLPMFH W + W Sbjct: 184 ISLNYTSGTTGNPKGVVYHHRGAYLNALGNQMTWAMGHRPVYLWTLPMFHCNGWCYPWTI 243 Query: 250 VAVGATNVCLDKVDYPLIYRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNRVHMLVA 309 A+ T+V L +VD I L+ + +V+H+C AP V L + + + V +VA Sbjct: 244 TALAGTHVFLRRVDPQKILTLIREHKVSHLCGAPIVLNALVNMPEAAKAAIEHPVQAMVA 303 Query: 310 GAAPAPATLKAMQEIGGYMCHVYGLTETYGPHSICEWRREWDSLPLEEQAKLKARQGIPY 369 GAAP + A++++G + H YGLTE YGP ++C W EWD+L LEE+A++K+RQG+ Y Sbjct: 304 GAAPPAKVIGAVEQMGIKVTHTYGLTEVYGPVTVCAWHDEWDALSLEERARIKSRQGVRY 363 Query: 370 VSFE--MDVFDANGKPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFRDGWFHSGDAA 427 + + M +PVP DG T+GE+ MRG+ V GY KNPE TAE+FR GWFH+GD A Sbjct: 364 PTLDGLMVADPQTLQPVPRDGDTLGEIFMRGNTVMKGYLKNPEATAEAFRGGWFHTGDLA 423 Query: 428 VVHPDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEKWGEVVTAR 487 V H DGYIEI DR KD+I +GGE +S+I VE L + V AV PDEKWGE A Sbjct: 424 VWHADGYIEIKDRLKDIIISGGENISTIEVEDALYKHSAVLEAAVVARPDEKWGETPCAF 483 Query: 488 IELQEGVKLTEE-EVIKFCKERLAHFECPKIVEFGPIPMTATGKMQKYVLRNEAKA 542 + L+ G + T E ++ +C+E LA F+ PK V FG +P T+TGK+QKYVLR+ AKA Sbjct: 484 VALKPGREDTREADITSWCREHLAGFKVPKTVVFGELPKTSTGKIQKYVLRDRAKA 539 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 778 Number of extensions: 40 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 540 Length adjustment: 35 Effective length of query: 514 Effective length of database: 505 Effective search space: 259570 Effective search space used: 259570 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory