Align Sodium/proline symporter; Proline permease; Propionate transporter (characterized)
to candidate PP_4946 PP_4946 sodium/L-proline transporter
Query= SwissProt::P07117 (502 letters) >FitnessBrowser__Putida:PP_4946 Length = 542 Score = 759 bits (1960), Expect = 0.0 Identities = 378/491 (76%), Positives = 426/491 (86%), Gaps = 1/491 (0%) Query: 3 ISTPMLVTFCVYIFGMILIGFIAWRSTKNFDDYILGGRSLGPFVTALSAGASDMSGWLLM 62 + P+ +TF +YI M+LIGF A+R+T N DYILGGRSLG VTALSAGASDMSGWLLM Sbjct: 51 MGNPLTITFVIYIAAMVLIGFAAYRATNNLSDYILGGRSLGSVVTALSAGASDMSGWLLM 110 Query: 63 GLPGAVFLSGISESWIAIGLTLGAWINWKLVAGRLRVHTEYNNNALTLPDYFTGRFEDKS 122 GLPGA++ +G+SE+WIAIGLT+GA++NW VAGRLRV TE+N +ALTLPDYF+ RFED S Sbjct: 111 GLPGAIYFAGLSEAWIAIGLTVGAYLNWLFVAGRLRVQTEHNGDALTLPDYFSSRFEDNS 170 Query: 123 RILRIISALVILLFFTIYCASGIVAGARLFESTFGMSYETALWAGAAATILYTFIGGFLA 182 +LRIISA+VIL+FFTIYCASGIVAGARLFESTFGMSYETALWAGAAATI YTF+GGFLA Sbjct: 171 GLLRIISAIVILVFFTIYCASGIVAGARLFESTFGMSYETALWAGAAATIAYTFVGGFLA 230 Query: 183 VSWTDTVQASLMIFALILTPVIVIISVGGFGDSLEVIKQKSIENVDMLKGLNFVAIISLM 242 VSWTDTVQASLMIFALILTPVIV+IS GGF + I+ + N DMLKG F+ IISLM Sbjct: 231 VSWTDTVQASLMIFALILTPVIVLISTGGFDQTFAAIEAVNPANFDMLKGATFIGIISLM 290 Query: 243 GWGLGYFGQPHILARFMAADSHHSIVHARRISMTWMILCLAGAVAVGFFGIAYFNDHPAL 302 GWGLGYFGQPHILARFMAADS SI ARRISMTWMILCLAG AVGFFGIAYF+ HP L Sbjct: 291 GWGLGYFGQPHILARFMAADSVKSIAKARRISMTWMILCLAGTCAVGFFGIAYFSAHPEL 350 Query: 303 AGAVNQNAERVFIELAQILFNPWIAGILLSAILAAVMSTLSCQLLVCSSAITEDLYKAFL 362 AG V++N ERVFIELA+ILFNPW+AG+LLSAILAAVMSTLSCQLLVCSSA+TED YKAFL Sbjct: 351 AGPVSENHERVFIELAKILFNPWVAGVLLSAILAAVMSTLSCQLLVCSSALTEDFYKAFL 410 Query: 363 RKHASQKELVWVGRVMVLVVALVAIALAANPENRVLGLVSYAWAGFGAAFGPVVLFSVMW 422 RK+ASQ ELVWVGR+MVL VAL+AIA+AANPENRVLGLV+YAWAGFGAAFGPVVL SV+W Sbjct: 411 RKNASQVELVWVGRLMVLAVALIAIAMAANPENRVLGLVAYAWAGFGAAFGPVVLISVLW 470 Query: 423 SRMTRNGALAGMIIGALTVIVWKQFGWLGLYEIIPGFIFGSIGIVVFSLLGKAPSAAMQK 482 MTRNGALAG+++GALTVI+WK F LGLYEIIPGF+F SI IV+ S LG +PS M K Sbjct: 471 KGMTRNGALAGIVVGALTVILWKNFDTLGLYEIIPGFLFASIAIVLVSKLG-SPSQTMVK 529 Query: 483 RFAEADAHYHS 493 RF ADA YH+ Sbjct: 530 RFEAADAAYHA 540 Lambda K H 0.328 0.140 0.436 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 948 Number of extensions: 50 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 502 Length of database: 542 Length adjustment: 35 Effective length of query: 467 Effective length of database: 507 Effective search space: 236769 Effective search space used: 236769 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory