Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate PP_0056 PP_0056 choline dehydrogenase
Query= metacyc::MONOMER-15202 (579 letters) >FitnessBrowser__Putida:PP_0056 Length = 550 Score = 615 bits (1587), Expect = e-180 Identities = 323/544 (59%), Positives = 380/544 (69%), Gaps = 21/544 (3%) Query: 36 FDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNYHWIHIPVGYLYCINNPRTDWRF 95 FDY+VVGAG AGCLLANRLSADP+ RVLL+EAGGRDNY WIHIPVGYLYCI NPRTDW F Sbjct: 10 FDYVVVGAGPAGCLLANRLSADPSCRVLLLEAGGRDNYPWIHIPVGYLYCIGNPRTDWCF 69 Query: 96 RTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDAWRWDNCLPD 155 +TE PGL GR+L YPRGK LGGCSSINGM+Y+RGQA DYD WA G+D W W + LP Sbjct: 70 KTEAQPGLGGRALGYPRGKVLGGCSSINGMIYMRGQAADYDHWAA-QGNDGWAWKDVLPL 128 Query: 156 FMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAVEAGVPRTRDF 215 F E+H+ +H HG GEWR+E+QR W +L F AA ++G+ + DF Sbjct: 129 FKASENHFA------GASEH---HGAEGEWRVERQRYSWPILDAFRDAAEQSGIGKVDDF 179 Query: 216 NRGDNEGVDAFEVNQRSGWRWNASKAFLRGVEQRGNLTVWHSTQV--LKLDFASGEGSEP 273 N GDN+G F+VNQRSG RWNASKAFLR ++ R NLTV QV + LD + Sbjct: 180 NTGDNQGCGYFQVNQRSGVRWNASKAFLRPIKDRANLTVLTGVQVDQVLLDNTRARAVKA 239 Query: 274 RCCGVTVERAGKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPVVADLPGV 333 G E A AR E++L AGA+GSP +LQ SGIGP LL I V D+PGV Sbjct: 240 LWQGAWHEFA-------ARREIILCAGAVGSPGILQRSGIGPRQLLESLGIGVRHDMPGV 292 Query: 334 GENLQDHLQIRSIYKVKGAKTLNTMANSLIGKAKIGLEYILKRSGPMSMAPSQLCIFTRS 393 G NLQDHLQ+R IY+++ +TLN MANSL GK +GL Y+ RSGP++MAPSQL F RS Sbjct: 293 GGNLQDHLQLRLIYQIRNTRTLNQMANSLWGKMGMGLRYLYDRSGPLAMAPSQLGAFVRS 352 Query: 394 SKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGNPRQAPAIS 453 S E NL+YHVQPLSLE FG+PLH FPA TASVCNL P SRG + I S + P I Sbjct: 353 SPEQATANLQYHVQPLSLERFGEPLHQFPAFTASVCNLRPASRGRIDICSTDMNSTPRID 412 Query: 454 PNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARLAGDIGTTI 513 PNYLS +D +VAAD++R+TR I PA A ++P+E+ PG QS+EDL AG IGTTI Sbjct: 413 PNYLSAPQDLRVAADAIRLTRRIVQAPALAAFEPKEYLPGPALQSEEDLFEAAGKIGTTI 472 Query: 514 FHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTLMIAEKAAG 573 FHPVGT +MG + M VVD+ LRV G+ GLRV DASIMP ITSGNT SPTLMIAEKAA Sbjct: 473 FHPVGTCRMG--NGAMDVVDNQLRVHGIPGLRVADASIMPQITSGNTCSPTLMIAEKAAQ 530 Query: 574 WILK 577 ILK Sbjct: 531 LILK 534 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 949 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 550 Length adjustment: 36 Effective length of query: 543 Effective length of database: 514 Effective search space: 279102 Effective search space used: 279102 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory