Align 2-aminomuconate 6-semialdehyde dehydrogenase (EC 1.2.1.32) (characterized)
to candidate PP_2680 PP_2680 aldehyde dehydrogenase
Query= metacyc::MONOMER-13361 (500 letters) >lcl|FitnessBrowser__Putida:PP_2680 PP_2680 aldehyde dehydrogenase Length = 506 Score = 333 bits (854), Expect = 8e-96 Identities = 185/485 (38%), Positives = 276/485 (56%), Gaps = 17/485 (3%) Query: 22 NYIDGNFVTSASS--FANINPVNGKLISDVFEADAKQVNEAVVAAQNALKGPWGKLSVQD 79 N+I G FV + F N +PVNG+ I++ + A+ V A+ AA A + WGK SVQD Sbjct: 21 NFIGGEFVQPLAGQYFINSSPVNGQPIAEFPRSTAQDVERALDAAHAAAEA-WGKTSVQD 79 Query: 80 RAALIHKIADGIQARFEEFVAAEVADTGRPVHQARTLDIPRAIANFRTFADLAKTSHTDL 139 RA ++ KIAD I+ E E D G+ + + D+P A +FR FA + + Sbjct: 80 RARVLLKIADRIEQNLEVLAVTESWDNGKAIRETLNADVPLAADHFRYFAGCIRAQEGGV 139 Query: 140 FEMSTSDGSGALNYTVRKPLGVIGVISPWNLPLLLFTWKVAPALACGNTVVAKPSEESPS 199 E++ G + Y + +PLGV+G I PWN PLL+ WK+APALA GN VV KP+E++P Sbjct: 140 GEIN----EGTVAYHIHEPLGVVGQIIPWNFPLLMAAWKLAPALAAGNCVVLKPAEQTPL 195 Query: 200 SATLLAEVMHDAGVPPGVFNLIHGFGKDSAGEFLTQHPGISALTFTGESKTGSTIMKAVA 259 S T+ AE++ D +P GV N++ GFG++ AGE L I+ + FTG + GS IMK A Sbjct: 196 SITVFAELIADL-LPAGVLNIVQGFGRE-AGEALATSKRIAKIAFTGSTPVGSHIMKCAA 253 Query: 260 DGVKEVSFELGGKNAAVVFAD------ADLDAAIEGVLRSSFTNSGQVCLCSERVYVHRS 313 + + + ELGGK+ + F D A ++ A EG++ + F N G+VC C R + S Sbjct: 254 ENIIPSTVELGGKSPNIFFEDIMQAEPAFIEKAAEGLVLAFF-NQGEVCTCPSRALIQES 312 Query: 314 IFDEFVSGLKVEAERLVVGYPDQDGVNMGPLISHGHRDKVLSYYRLAVDEGATVVTGGGV 373 I++ F++ + + ++ G P +G S DK+LSY +A +EGA ++TGGG Sbjct: 313 IYEPFMAEVMKKIAKITRGNPLDTETMVGAQASEQQYDKILSYLEIAREEGAQLLTGGGA 372 Query: 374 PKFNDERDQGAYVQPTIWTGLSDKARCVTEEIFGPVCHISPFDDEDEVINRVNDSNYGLA 433 + + G Y+QPT+ G ++K R EEIFGPV ++ F DE E + NDS +GL Sbjct: 373 ERLQGDLASGYYIQPTLLKG-NNKMRVFQEEIFGPVVGVTTFKDEAEALAIANDSEFGLG 431 Query: 434 CAIWTTNLSRAHRVSRQIHVGLVWVNTWYLRDLRTPFGGVKLSGLGREGGRFSMDFYSDI 493 +WT +++RA+R+ R I G VW N ++L FGG K SG+GRE + +D Y Sbjct: 432 AGLWTRDINRAYRMGRGIKAGRVWTNCYHLYPAHAAFGGYKKSGVGRETHKMMLDHYQQT 491 Query: 494 ANICI 498 N+ + Sbjct: 492 KNLLV 496 Lambda K H 0.318 0.135 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 553 Number of extensions: 20 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 506 Length adjustment: 34 Effective length of query: 466 Effective length of database: 472 Effective search space: 219952 Effective search space used: 219952 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory