Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate PP_3646 PP_3646 Aldehyde dehydrogenase family protein
Query= SwissProt::Q9H2A2 (487 letters) >FitnessBrowser__Putida:PP_3646 Length = 493 Score = 324 bits (830), Expect = 5e-93 Identities = 182/483 (37%), Positives = 272/483 (56%), Gaps = 10/483 (2%) Query: 7 LLMLENFIDGKFLPCSS--YIDSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPS--WS 62 L+ + IDG++ S DS +P+T + + ++P++ + ++E AV+AA+ AF S W Sbjct: 3 LVRFQMCIDGQWRDAQSGKTFDSLNPATAQAWAQLPDADEADVELAVQAAQRAFDSKAWR 62 Query: 63 SRSPQERSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFASSSL 122 S + R ++L ++ DL+ ++ E AQ ES+D GK + R + + F + A + Sbjct: 63 SITATARGKLLRRLGDLIAENKEHLAQLESRDNGKLIRETRGQ-VGYLPEFFHYTAGLAD 121 Query: 123 HHTSECTQMDHLGCMHYTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVIAKPSEL 182 +D YTV P+GV I PWN PLYL K+APA+AAGNT++ KPSE Sbjct: 122 KLEGGTLPLDKPDLFAYTVHEPIGVVAGIIPWNSPLYLTAIKLAPALAAGNTIVLKPSEH 181 Query: 183 TSVTAWMLCKLLDKAGVPPGVVNIVFGTGPRVGEALVSHPEVPLISFTGSQPTAERITQL 242 S T L +L +AG P GVVN+V G GP G AL HP V I+FTG TA + + Sbjct: 182 ASATILELARLALEAGFPAGVVNVVTGYGPSTGAALTRHPLVRKIAFTGGAATARHVVRS 241 Query: 243 SAPHCKKLSLELGGKNPAIIFEDANLDECIPATVRSSFANQGEICLCTSRIFVQKSIYSE 302 SA + KLSLELGGK+P IIF DA+LD I V +A G+ C+ SR+ VQ I+ E Sbjct: 242 SAENFAKLSLELGGKSPNIIFADADLDSAINGAVAGIYAASGQSCVAGSRLLVQDEIFDE 301 Query: 303 FLKRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCGEGVDKLS 362 F++R + ++ ++G P D +G + + L V V A AEGA++ G + Sbjct: 302 FVERLIARAKRIRIGNPQDDASEMGPMATAQQLAVVEGLVAAAKAEGAKLHMGGKRADV- 360 Query: 363 LPARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNVKYGLAAT 422 G+F PT+ + M EE+FGPV V+ F +EEE + AN+ ++GLAA Sbjct: 361 ----EGDGWFYEPTLFECDSNAMTIMQEEVFGPVAAVIRFKTEEEALAMANDSQFGLAAG 416 Query: 423 VWSSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYDFFTEIKT 482 +W+ ++GR HR+A+ ++SG++W N + P GG K+SG GRE DS +TE+KT Sbjct: 417 IWTRDLGRAHRLARDVRSGIIWVNTYRAVSAMAPIGGFKNSGYGRESGIDSVLAYTELKT 476 Query: 483 ITV 485 + + Sbjct: 477 VWI 479 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 559 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 493 Length adjustment: 34 Effective length of query: 453 Effective length of database: 459 Effective search space: 207927 Effective search space used: 207927 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory