Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate 6938534 Sama_2637 succinate-semialdehyde dehydrogenase (NAD(P)(+)) (RefSeq)
Query= curated2:Q2SXN9 (487 letters) >FitnessBrowser__SB2B:6938534 Length = 480 Score = 205 bits (522), Expect = 2e-57 Identities = 157/467 (33%), Positives = 231/467 (49%), Gaps = 16/467 (3%) Query: 2 TELFIDGAWVDG-AGPVFASRNPGTNERVWEGASASADDVERAVASARRAFAAWSALDLD 60 T+ +I+G W D +G NP TNE + D+ A+A+A A AW AL Sbjct: 11 TKCYINGEWRDALSGETVTIANPATNEAIASVPVMGRDETREAIAAAEAALPAWRALTAK 70 Query: 61 ARCTIVKRFAALLVERKEALATMIGRETGKPLWEARTEVASMAAKVDISITAYHERTGEK 120 R ++R+ L++E + LA M+ E GKPL EA+ EV A+ ++ G+ Sbjct: 71 ERGAKLRRWYELMLENADDLALMMTTEQGKPLAEAKGEVVYAASFIEWFAEEAKRLYGDT 130 Query: 121 -RAPMADGVAVLRHRPHGVVAVFGPYNFPGHLPNGHIVPALIAGNTVVFKPSELAPGVAR 179 D ++ + GV A P+NFP + PAL AG T++ KP+ P A Sbjct: 131 IPGHQGDKRIMVIKQGVGVTAAITPWNFPAAMITRKAGPALAAGCTMIVKPAPQTPFTAL 190 Query: 180 ATVEIWRDAGLPAGVLNLVQGEK-DTGVALANHRQIDGLFFTGSSDTGTLLHKQFGGRPE 238 A E+ +AG+P GV ++V G+ G L + + L FTGS+ G L +Q + Sbjct: 191 ALAELAAEAGIPPGVFSVVTGDAVAIGNELCENPVVRKLSFTGSTGVGIKLMQQCAPTLK 250 Query: 239 IVLALEMGGNNPLVVAEVEDIDAAVHHAIQSAFLSAGQRCTCARRILVPRGAFGDRFVAR 298 V +LE+GGN P +V D+DAAV A+ S + +AGQ C CA R+ V G + D F + Sbjct: 251 KV-SLELGGNAPFIVFNDADLDAAVEGAMISKYRNAGQTCVCANRLYVQDGVY-DAFAQK 308 Query: 299 LADVASKITASVFDADPQPFMGAVISARAASRLVAAQARLVGLGASPIIEMKQRDPALG- 357 LA +K+ A+P G +I+A A ++ + + GA+ + K P G Sbjct: 309 LAAAVAKLKVG-NGAEPGVTTGPLINAAALEKVQSHLQDALDKGATLVAGGK---PLGGN 364 Query: 358 FVNAAILDVTNV---RELPDEEHFGPLAQIVRYTDLDDAIARANDTAFGLSAGLLADDEQ 414 F+ AI VTNV ++ EE FGPLA + R++D+DD I +ANDT FGL+A D Sbjct: 365 FMEPAI--VTNVDASMKVAREETFGPLAPLFRFSDVDDVIRQANDTEFGLAAYFYGRDIS 422 Query: 415 AWHTFRRAIRAGIVNWNRPTNGASSAAPFGGAGRSGNHRPSAYYAAD 461 A+ G+V N ++ APFGG SG R + Y D Sbjct: 423 LIWKVAEALEYGMVGVNTGLI-STEVAPFGGMKSSGLGREGSKYGID 468 Lambda K H 0.320 0.134 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 505 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 480 Length adjustment: 34 Effective length of query: 453 Effective length of database: 446 Effective search space: 202038 Effective search space used: 202038 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory