Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate 6938533 Sama_2636 4-aminobutyrate aminotransferase (RefSeq)
Query= reanno::pseudo3_N2E3:AO353_11510 (425 letters) >lcl|FitnessBrowser__SB2B:6938533 Sama_2636 4-aminobutyrate aminotransferase (RefSeq) Length = 425 Score = 605 bits (1560), Expect = e-178 Identities = 303/422 (71%), Positives = 348/422 (82%), Gaps = 3/422 (0%) Query: 1 MSKTNASLMKRREAAVPRGVGQIHPIFADHAKNSTVTDVEGREFIDFAGGIAVLNTGHLH 60 MS TN SLM RR AAV GVGQIHP+F + A+N+TV DVEGRE+IDFAGGIAVLNTGHLH Sbjct: 1 MSLTNDSLMVRRRAAVAGGVGQIHPVFTERAENATVWDVEGREYIDFAGGIAVLNTGHLH 60 Query: 61 PKVIAAVTEQLNKLTHTCFQVLAYEPYVELCEKINAKVPGDFAKKTLLVTTGSEAVENSI 120 PKV AAV EQL K +HTCF VL YE YV +CEK+N VPGDFAKK+ L T+GSEAVEN+I Sbjct: 61 PKVKAAVAEQLEKFSHTCFMVLGYESYVAVCEKLNQLVPGDFAKKSALFTSGSEAVENAI 120 Query: 121 KIARAATGRAGVIAFTGAYHGRTMMTLGLTGKVVPYSAGMGLMPGGIFRALYPNELHGVS 180 K+ARA T RAGVIAFT YHGRTM L LTGKV PYS GMGLM +FRA +P LHGVS Sbjct: 121 KVARAYTKRAGVIAFTSGYHGRTMAALALTGKVAPYSKGMGLMQANVFRAEFPCALHGVS 180 Query: 181 IDDSIASIERIFKNDAEPRDIAAIIIEPVQGEGGFYVAPKEFMKRLRALCDQHGILLIAD 240 DD++ASIERIFKNDAEP DIAAII+EPVQGEGGFY A FMKRLR LCD+ GI+LIAD Sbjct: 181 EDDAMASIERIFKNDAEPSDIAAIILEPVQGEGGFYAATPGFMKRLRELCDREGIMLIAD 240 Query: 241 EVQTGAGRTGTFFAMEQMGVAADLTTFAKSIAGGFPLAGVCGKAEYMDAIAPGGLGGTYA 300 EVQTGAGRTGTFFAMEQMGVAAD+TTFAKSIAGGFPL+G+ G+AE MDAI PGGLGGTY Sbjct: 241 EVQTGAGRTGTFFAMEQMGVAADITTFAKSIAGGFPLSGITGRAEVMDAIGPGGLGGTYG 300 Query: 301 GSPIACAAALAVMEVFEEEHLLDRCKAVGERLVTGLKAIQAKYPVIGEVRALGAMIAVEL 360 GSP+ACAAALAV+EVFEEE LL+R A+G+ + + + + ++YP I EVR LG+MIA+EL Sbjct: 301 GSPLACAAALAVIEVFEEEKLLERSNAIGQTIKSAIGELASRYPQIAEVRGLGSMIAIEL 360 Query: 361 FENGDSHKPNAAAVAKVVAKARDKGLILLSCGTYGNVLRVLVPLTAPDEQLDKGLAIMEE 420 ENG KP +V+ +AR++GLILLSCGTYGNVLR+LVP+TAPDEQ+ +GL IM E Sbjct: 361 MENG---KPAPEYCPQVLTEARNRGLILLSCGTYGNVLRILVPITAPDEQIQRGLEIMAE 417 Query: 421 CF 422 CF Sbjct: 418 CF 419 Lambda K H 0.320 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 663 Number of extensions: 13 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 425 Length of database: 425 Length adjustment: 32 Effective length of query: 393 Effective length of database: 393 Effective search space: 154449 Effective search space used: 154449 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory