Align Aldehyde dehydrogenase (EC 1.2.1.3) (characterized)
to candidate 6939342 Sama_3435 aldehyde dehydrogenase (RefSeq)
Query= reanno::Marino:GFF3202 (533 letters) >FitnessBrowser__SB2B:6939342 Length = 506 Score = 786 bits (2031), Expect = 0.0 Identities = 370/506 (73%), Positives = 433/506 (85%) Query: 28 MIYAQPGKDGSVVSFKSRYENYIGGEWVAPVKGQYFENITPVTGNVICEIPRSSAEDIDL 87 MIY+ PG G++ SFK+RY+N+IGG+WV PV G+YF+N++PV G V C+ RS DI+L Sbjct: 1 MIYSAPGTAGAIASFKARYDNFIGGKWVPPVGGEYFDNVSPVDGKVFCQAARSDYRDIEL 60 Query: 88 ALDAAHKAAPAWGKTSPTERSNILLKIADRIEANLEKLAVAETWDNGKAVRETLNADIPL 147 ALDAAH A +WGKTS TERSN+LLKIADR+E +LE+LAV ETW+NGKAVRETLNAD+PL Sbjct: 61 ALDAAHAAKDSWGKTSVTERSNLLLKIADRVEQHLERLAVVETWENGKAVRETLNADLPL 120 Query: 148 AADHFRYFAGCLRAQEGHMGEIDHNTVAYHFHEPLGVVGQIIPWNFPILMAAWKLGPCLA 207 DHFRYFAGC+RAQEG ++D NTV+YH EPLGVVGQIIPWNFP+LMAAWK+ P LA Sbjct: 121 FVDHFRYFAGCIRAQEGSAADLDANTVSYHLPEPLGVVGQIIPWNFPLLMAAWKIAPALA 180 Query: 208 AGNCTVLKPAEQTPASILVLMEIIGDLLPPGVLNIVNGYGIEAGQALATSKRIAKIAFTG 267 AGNC VLKPAEQTPASI+VL+E I DLLPPGVLN+VNG+G EAG ALATSKRIAK+AFTG Sbjct: 181 AGNCVVLKPAEQTPASIMVLLETIEDLLPPGVLNVVNGFGAEAGAALATSKRIAKLAFTG 240 Query: 268 STPVGSHILKCAAENIIPSTVELGGKSPNIYFSDVMKAEPEFIDKCVEGLVLAFFNQGEV 327 ST VG+HILKCAAEN+IPSTVELGGKSPNIYF+DVM E ++DK +EG++LAFFNQGEV Sbjct: 241 STEVGNHILKCAAENLIPSTVELGGKSPNIYFADVMNHEDNYLDKAIEGMLLAFFNQGEV 300 Query: 328 CTCPSRALVQEDMFEEFMQKVVQRTKSIKRGNPLDTDVQVGAQASKEQFDKIMSYLAIGK 387 CTCPSR LVQE +++ F++KV+ R K+I++G+PLDTD QVGAQAS+EQ+DKI+ YL IG+ Sbjct: 301 CTCPSRVLVQESIYDAFIEKVIARAKTIRQGSPLDTDTQVGAQASREQYDKILGYLDIGR 360 Query: 388 EEGAVVLTGGDREHLDEEFNNGFYIQPTLFKGDNKMRVFQEEIFGPVVGVTTFKTEEEAL 447 EGA VL GG+ + D G+YIQPT+ KG NKMRVFQEEIFGPVV VTTFK E EAL Sbjct: 361 AEGAKVLMGGEFKLQDGPEKGGYYIQPTILKGHNKMRVFQEEIFGPVVSVTTFKDEAEAL 420 Query: 448 AIANDTEFGLGAGVWTRDTNLAYRMGRNIQAGRVWMNCYHAYPAHAAFGGYKKSGVGRET 507 AIANDT++GLGAGVWTRD NLA RMGR IQAGRVW+NCYHAYPAHAAFGGYKKSG+GRET Sbjct: 421 AIANDTQYGLGAGVWTRDMNLAQRMGRGIQAGRVWINCYHAYPAHAAFGGYKKSGIGRET 480 Query: 508 HKMALEHYQQTKCMLTSYDTNPLGFF 533 HKM L HYQ TK +L S+DTNPLGFF Sbjct: 481 HKMMLSHYQNTKNLLVSFDTNPLGFF 506 Lambda K H 0.319 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 853 Number of extensions: 32 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 533 Length of database: 506 Length adjustment: 35 Effective length of query: 498 Effective length of database: 471 Effective search space: 234558 Effective search space used: 234558 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory