Align Alpha-aminoadipic semialdehyde dehydrogenase; Alpha-AASA dehydrogenase; Aldehyde dehydrogenase family 7 member A1; Antiquitin-1; Betaine aldehyde dehydrogenase; Delta1-piperideine-6-carboxylate dehydrogenase; P6c dehydrogenase; EC 1.2.1.31; EC 1.2.1.3; EC 1.2.1.8 (characterized)
to candidate 6938534 Sama_2637 succinate-semialdehyde dehydrogenase (NAD(P)(+)) (RefSeq)
Query= SwissProt::Q9DBF1 (539 letters) >FitnessBrowser__SB2B:6938534 Length = 480 Score = 216 bits (551), Expect = 1e-60 Identities = 141/465 (30%), Positives = 227/465 (48%), Gaps = 12/465 (2%) Query: 56 NGSWGGR--GEVITTYCPANNEPIARVRQASLKDYEETIGKAKKAWNIWADIPAPKRGEI 113 NG W GE +T PA NE IA V + E I A+ A W + A +RG Sbjct: 16 NGEWRDALSGETVTIANPATNEAIASVPVMGRDETREAIAAAEAALPAWRALTAKERGAK 75 Query: 114 VRKIGDAFREKIQLLGRLVSLEMGKILVEGIGEVQEYVDVCDYAAGLSRMIGGPTLPSER 173 +R+ + E L +++ E GK L E GEV ++ A ++ + G T+P + Sbjct: 76 LRRWYELMLENADDLALMMTTEQGKPLAEAKGEVVYAASFIEWFAEEAKRLYGDTIPGHQ 135 Query: 174 PGHALIEMWNPLGLVGIITAFNFPVAVFGWNNAIALITGNVCLWKGAPTTSLVSVAVTKI 233 ++ + +G+ IT +NFP A+ AL G + K AP T ++A+ ++ Sbjct: 136 GDKRIMVIKQGVGVTAAITPWNFPAAMITRKAGPALAAGCTMIVKPAPQTPFTALALAEL 195 Query: 234 IAQVLEDNLLPGAICSLVCGGA-DIGTTMARDERVNLLSFTGSTQVGKEVALMVQERFGK 292 A+ +P + S+V G A IG + + V LSFTGST VG ++ K Sbjct: 196 AAEAG----IPPGVFSVVTGDAVAIGNELCENPVVRKLSFTGSTGVGIKLMQQCAPTLKK 251 Query: 293 SLLELGGNNAIIAFEDADLSLVVPSVLFAAVGTAGQRCTTVRRLFLHESIHNEVVDRLRS 352 LELGGN I F DADL V + + AGQ C RL++ + +++ +L + Sbjct: 252 VSLELGGNAPFIVFNDADLDAAVEGAMISKYRNAGQTCVCANRLYVQDGVYDAFAQKLAA 311 Query: 353 AYSQIRVGNPWDPNILYGPLHTKQAVSMFVRAVEEAKKQGGTVVYGGKVMDHPGNYVEPT 412 A ++++VGN +P + GPL A+ +++A +G T+V GGK + GN++EP Sbjct: 312 AVAKLKVGNGAEPGVTTGPLINAAALEKVQSHLQDALDKGATLVAGGKPLG--GNFMEPA 369 Query: 413 IVTGLAHDAPIVHQETFAPILYVFKFQDEEEVFEWNNEVKQGLSSSIFTKDLGRIFRWLG 472 IVT + + +ETF P+ +F+F D ++V N+ + GL++ + +D+ I W Sbjct: 370 IVTNVDASMKVAREETFGPLAPLFRFSDVDDVIRQANDTEFGLAAYFYGRDISLI--WKV 427 Query: 473 PKGSDCGIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQYM 517 + + G+V VN E+ FGG K +G GRE +Y+ Sbjct: 428 AEALEYGMVGVNTGLISTEV-APFGGMKSSGLGREGSKYGIDEYV 471 Lambda K H 0.319 0.137 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 647 Number of extensions: 34 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 480 Length adjustment: 34 Effective length of query: 505 Effective length of database: 446 Effective search space: 225230 Effective search space used: 225230 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory