GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gluP in Shewanella amazonensis SB2B

Align D-mannitol and D-mannose transporter (MFS superfamily) (characterized)
to candidate 6937233 Sama_1403 glucose/galactose transporter (RefSeq)

Query= reanno::SB2B:6936374
         (413 letters)



>FitnessBrowser__SB2B:6937233
          Length = 415

 Score =  426 bits (1096), Expect = e-124
 Identities = 223/406 (54%), Positives = 293/406 (72%), Gaps = 10/406 (2%)

Query: 1   MAFVSSTTPQNGSAAPAQSHQQLLFGAMTSLFFIWGFITALNDILIPHLKGIFDLSYTQA 60
           MA V      +  AA A++++  L G++T+LFF+WGFIT LNDILIPHLK +F L+Y QA
Sbjct: 1   MATVPIANANHAGAAGAENYRFAL-GSLTTLFFMWGFITCLNDILIPHLKAVFSLNYAQA 59

Query: 61  MLVQFCFFGAYFLVSPLAGVLIARIGYLRGIIFGLSTMATGCLLFYPASSLEQYALFLLA 120
           ML+QFCFFGAYFLVS  AGVL+ R+GY +GI+ GL T A GC LFYPA+    Y +FL A
Sbjct: 60  MLIQFCFFGAYFLVSVPAGVLVKRLGYQKGIVVGLLTAALGCGLFYPAAVSATYGVFLGA 119

Query: 121 LFVLASGITILQVSANPFVARLGPERTAASRLNLAQALNSLGHTLGPLFGSLLIFGAAAG 180
           LFVLASGIT+LQV+ANP+V  LGP +TA+SRL L QA NSLG T+ P FGS+LI   A G
Sbjct: 120 LFVLASGITVLQVAANPYVTALGPVQTASSRLTLTQAFNSLGTTIAPAFGSVLILSVAVG 179

Query: 181 TH-----EAVQLPYLLLAAVIGIIAVGFIFLGGKVKHADMGVDH--RHKGSLLSHKRLLL 233
                  +AV+LPYLLL  ++ ++AV F  L  K+ H     D       S L+H+ L+L
Sbjct: 180 ASAEAEADAVKLPYLLLCGMLIVLAVVFALL--KLPHIHDQEDEVAATGQSALAHRHLVL 237

Query: 234 GALAIFLYVGAEVSIGSFLVNYFAEPSIGGLDEKSAAELVSWYWGGAMIGRFAGAALTRR 293
           GA+ IF+YVG EV+IGSFLVN+  E  + G+ E  AA  +++YWGGAM+GRF GAA+ ++
Sbjct: 238 GAIGIFVYVGGEVAIGSFLVNFLGESHVAGMAEADAAHYIAFYWGGAMVGRFIGAAVMQK 297

Query: 294 FNPAMVLAANAVFANLLLMLTIVSSGELALVAVLAVGFFNSIMFPTIFTLAIEGLGELTS 353
            +   VL  NA  A LL+++ + SSG LA+ A+LAVG FNSIMFPTIF+LA++ LG  T+
Sbjct: 298 VDAGKVLGFNATMAALLVLVAMNSSGALAMWAILAVGLFNSIMFPTIFSLALKNLGPATA 357

Query: 354 RGSGLLCQAIVGGALLPVIQGVVADNVGVQLSFIVPTFCYFYICWY 399
           +GSG+LC AIVGGAL+P++QG++AD+VG+  SFI+P  CY YI +Y
Sbjct: 358 QGSGILCLAIVGGALVPLLQGLLADSVGLSASFILPVLCYGYILFY 403


Lambda     K      H
   0.329    0.142    0.425 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 513
Number of extensions: 17
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 413
Length of database: 415
Length adjustment: 31
Effective length of query: 382
Effective length of database: 384
Effective search space:   146688
Effective search space used:   146688
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory