Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate 6938534 Sama_2637 succinate-semialdehyde dehydrogenase (NAD(P)(+)) (RefSeq)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >FitnessBrowser__SB2B:6938534 Length = 480 Score = 719 bits (1856), Expect = 0.0 Identities = 351/480 (73%), Positives = 407/480 (84%) Query: 1 MQLKDTQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 MQLK L + + +I+G W DA +G+T+ + NPAT E + +VP MG ETR AI AA+ A Sbjct: 1 MQLKRPSLLKTKCYINGEWRDALSGETVTIANPATNEAIASVPVMGRDETREAIAAAEAA 60 Query: 61 LPAWRALTAKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFA 120 LPAWRALTAKER KLRRWYEL++EN DDLA +MT EQGKPLAEAKGE+VYAASFIEWFA Sbjct: 61 LPAWRALTAKERGAKLRRWYELMLENADDLALMMTTEQGKPLAEAKGEVVYAASFIEWFA 120 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 EEAKR+YGD IPGHQ DKR++VIKQ +GVTAAITPWNFPAAMITRKAGPALAAGCTM++K Sbjct: 121 EEAKRLYGDTIPGHQGDKRIMVIKQGVGVTAAITPWNFPAAMITRKAGPALAAGCTMIVK 180 Query: 181 PASQTPFSAFALAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQ 240 PA QTPF+A ALAELA AGIP GVFSVV+G A IG+EL NP+VRKLSFTGST +G + Sbjct: 181 PAPQTPFTALALAELAAEAGIPPGVFSVVTGDAVAIGNELCENPVVRKLSFTGSTGVGIK 240 Query: 241 LMSECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDG 300 LM +CA +KKVSLELGGNAPFIVF+DADLD AVEGA+ISKYRN GQTCVCANRLY+QDG Sbjct: 241 LMQQCAPTLKKVSLELGGNAPFIVFNDADLDAAVEGAMISKYRNAGQTCVCANRLYVQDG 300 Query: 301 VYDAFAEKLKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKP 360 VYDAFA+KL AVAKLK+GNG E G TTGPLI+ A+ KVQ H+ DAL KGAT++AGGKP Sbjct: 301 VYDAFAQKLAAAVAKLKVGNGAEPGVTTGPLINAAALEKVQSHLQDALDKGATLVAGGKP 360 Query: 361 MEGNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARD 420 + GNF EP I+TNV + VA+EETFGPLAPLFRF D DVI +NDTEFGLA+YFY RD Sbjct: 361 LGGNFMEPAIVTNVDASMKVAREETFGPLAPLFRFSDVDDVIRQANDTEFGLAAYFYGRD 420 Query: 421 LGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLGI 480 + +++VAEALEYGMVGVNTGLIS EVAPFGG+K+SGLGREGSKYGI++Y+EIKY+CL + Sbjct: 421 ISLIWKVAEALEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIDEYVEIKYICLSV 480 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 725 Number of extensions: 15 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 480 Length adjustment: 34 Effective length of query: 446 Effective length of database: 446 Effective search space: 198916 Effective search space used: 198916 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory