Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) (characterized)
to candidate 6938545 Sama_2648 aldehyde dehydrogenase (RefSeq)
Query= reanno::pseudo6_N2E2:Pf6N2E2_515 (500 letters) >lcl|FitnessBrowser__SB2B:6938545 Sama_2648 aldehyde dehydrogenase (RefSeq) Length = 498 Score = 234 bits (596), Expect = 7e-66 Identities = 162/484 (33%), Positives = 248/484 (51%), Gaps = 21/484 (4%) Query: 10 YLNGHVQDHDSTRFSNVFNPATGAVQARVALAEPGTVDAAVASALAAFPA--WSEQSSLR 67 ++NGH D + +P G + +VA + D AVA+A A F + WS QS ++ Sbjct: 24 FINGHYCDAVGKETFDCISPVDGRLLTQVASCQQADADIAVANARAVFESGVWSLQSPVK 83 Query: 68 RSRVMFKFKELLDRHHDELAQIISREHGKVLSDAHG-EVTRGIEIVEYACGAPNLLKTDF 126 R +VM +F ELL+ H DELA + + + GK ++ + +V + ++ A + + + Sbjct: 84 RKKVMIRFAELLEAHADELALLETLDMGKPIAHSKAVDVAGAARAIRWSGEAIDKIYDEL 143 Query: 127 SDNIGGGIDNWNLRQPLGVCAGVTPFNFPVMVPLWMIPLALVAGNCFILKPSERDPSASL 186 + I R+P+GV A + P+NFP+++ W + AL GN +LKPSE+ P ++ Sbjct: 144 APTPHNEI-GMITREPVGVVAAIVPWNFPMLMACWKLGPALATGNSVVLKPSEKSPLTAI 202 Query: 187 LMARLLTEAGLPDGVFNVVQGDKVAV-DALLQHPDIEAISFVGSTPIAEYIH-QQGTAHG 244 MA+L EAGLPDGV NV+ G V AL H D++ + F GST IA+ + G ++ Sbjct: 203 RMAQLAKEAGLPDGVLNVLPGFGHTVGQALALHMDVDTLVFTGSTKIAKQLMVYAGQSNM 262 Query: 245 KRVQALGGAKNHMIVMPDA-DLDQAADALIGAAYGSAGERCMAISIAVAVGDVGDELIAK 303 KRV G K+ IV DA DL AA+A A + GE C A S + V DELI Sbjct: 263 KRVWLEAGGKSPNIVFNDAPDLKAAAEAAASAIAFNQGEVCTAGSRLLVESGVKDELIKL 322 Query: 304 LLPRIDQLKIGNGQQPGTDMGPLVTAEHKAKVEGFIDAGVAEGARLIVDGRSFKVPGAEQ 363 ++ ++ + G+ P T G +V + V G+I AG EGA+L+ G +V Sbjct: 323 IVKEMEAWQPGHPLDPATTCGAVVDKQQLDTVLGYIKAGHDEGAKLMCGGS--QVLAETG 380 Query: 364 GFFVGATLFDQVTAEMSIYQQEIFGPVLGIVRVPDFATAVALINAHEFGNGVSCFTRDGG 423 G +V T+FD VT +M I ++EIFGPV+ ++ AVA+ N +G +T D Sbjct: 381 GVYVAPTVFDGVTNQMKIAREEIFGPVMSVITFDGMDEAVAIANDTIYGLAAGVWTSDIS 440 Query: 424 IARAFARSIKVGMVGINVPIPVPMAWHSFGGWKRSLFGDHHAYG---EEGLRFYSRYKSV 480 A A++++ GMV IN H GG + FG + G ++ L + +Y V Sbjct: 441 KAHKTAKALRSGMVWIN---------HYDGGDMTAPFGGYKQSGNGRDKSLHAFEKYTEV 491 Query: 481 MQRW 484 W Sbjct: 492 KATW 495 Lambda K H 0.321 0.137 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 560 Number of extensions: 26 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 498 Length adjustment: 34 Effective length of query: 466 Effective length of database: 464 Effective search space: 216224 Effective search space used: 216224 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory