GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fruP in Shewanella amazonensis SB2B

Align MFS transporter, FHS family, L-fucose permease (characterized, see rationale)
to candidate 6937233 Sama_1403 glucose/galactose transporter (RefSeq)

Query= uniprot:A0A1I2JXG1
         (442 letters)



>FitnessBrowser__SB2B:6937233
          Length = 415

 Score =  435 bits (1118), Expect = e-126
 Identities = 226/408 (55%), Positives = 292/408 (71%), Gaps = 19/408 (4%)

Query: 24  DYPMAMGVLTSIFFMWGFLTCLNDILIPHLKAVFKLNYAEAMLVQFTFFGAYFLMSLPAG 83
           +Y  A+G LT++FFMWGF+TCLNDILIPHLKAVF LNYA+AML+QF FFGAYFL+S+PAG
Sbjct: 19  NYRFALGSLTTLFFMWGFITCLNDILIPHLKAVFSLNYAQAMLIQFCFFGAYFLVSVPAG 78

Query: 84  LLVARLGYKKGIVAGLAVAGVGAAGFWPAAAMHFYPAFLGALFVLATGITVLQVAANAYV 143
           +LV RLGY+KGIV GL  A +G   F+PAA    Y  FLGALFVLA+GITVLQVAAN YV
Sbjct: 79  VLVKRLGYQKGIVVGLLTAALGCGLFYPAAVSATYGVFLGALFVLASGITVLQVAANPYV 138

Query: 144 ALLGPEKSASSRLTLAQALNSLGTFLAPKFGGLLILSAAV-LSAEQIAKLSPAEQVAYRV 202
             LGP ++ASSRLTL QA NSLGT +AP FG +LILS AV  SAE               
Sbjct: 139 TALGPVQTASSRLTLTQAFNSLGTTIAPAFGSVLILSVAVGASAE--------------- 183

Query: 203 QEAQTVQGPYLGLAIVLFLLAVFVYLFRLPALTEKTEQASVKQHSLVSPLRHPHVLFGVL 262
            EA  V+ PYL L  +L +LAV   L +LP + ++ ++ +       S L H H++ G +
Sbjct: 184 AEADAVKLPYLLLCGMLIVLAVVFALLKLPHIHDQEDEVAATGQ---SALAHRHLVLGAI 240

Query: 263 AIFFYVGGEVAIGSFLVNYLSMPDIGNMSEQAAANWVAYYWLGAMIGRFIGSALLAKLSP 322
            IF YVGGEVAIGSFLVN+L    +  M+E  AA+++A+YW GAM+GRFIG+A++ K+  
Sbjct: 241 GIFVYVGGEVAIGSFLVNFLGESHVAGMAEADAAHYIAFYWGGAMVGRFIGAAVMQKVDA 300

Query: 323 RKLLAIFAAINMALVLTTMMTKGTVAMYSVVSIGLFNSIMFPTIFSLGIERMGPMTGEAS 382
            K+L   A +   LVL  M + G +AM++++++GLFNSIMFPTIFSL ++ +GP T + S
Sbjct: 301 GKVLGFNATMAALLVLVAMNSSGALAMWAILAVGLFNSIMFPTIFSLALKNLGPATAQGS 360

Query: 383 SLLIMAIVGGAIVPFVQGLFADHIGVQHAFFLPLLCYAYIVFYGLYGS 430
            +L +AIVGGA+VP +QGL AD +G+  +F LP+LCY YI+FYGL GS
Sbjct: 361 GILCLAIVGGALVPLLQGLLADSVGLSASFILPVLCYGYILFYGLKGS 408


Lambda     K      H
   0.327    0.140    0.414 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 594
Number of extensions: 24
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 442
Length of database: 415
Length adjustment: 32
Effective length of query: 410
Effective length of database: 383
Effective search space:   157030
Effective search space used:   157030
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory