Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate 6938704 Sama_2807 phosphoribosylglycinamide formyltransferase 2 (RefSeq)
Query= SwissProt::P33221 (392 letters) >FitnessBrowser__SB2B:6938704 Length = 392 Score = 524 bits (1349), Expect = e-153 Identities = 269/389 (69%), Positives = 313/389 (80%), Gaps = 1/389 (0%) Query: 3 LLGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVINML 62 ++GT ATR MLLGSGELGKEVAIE QRLGVEVIAVDRY +APAM VAHRSHVINML Sbjct: 1 MIGTPYTQGATRAMLLGSGELGKEVAIELQRLGVEVIAVDRYPNAPAMQVAHRSHVINML 60 Query: 63 DGDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGLNVVPCARATKLTMNREGIRRLAA 122 DG+AL+ ++ EKPH ++PEIEAIAT L++LE EGL VVP ARAT+LTM+REGIRRLAA Sbjct: 61 DGEALKALIASEKPHLVIPEIEAIATQTLVELEAEGLKVVPTARATRLTMDREGIRRLAA 120 Query: 123 EELQLPTSTYRFADSESLFREAVADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKYAQ 182 E L LPTS Y F DS + + A+ G PC+VKPVMSSSGKGQ+ IRS + +AW YAQ Sbjct: 121 ETLALPTSPYVFCDSLTELQAALKVTGIPCVVKPVMSSSGKGQSVIRSPGDVQKAWDYAQ 180 Query: 183 QGGRAGAGRVIVEGVVKFDFEITLLTVSAVDGVHFCAPVGHRQEDGDYRESWQPQQMSPL 242 GGRAG GR+IVEG + FD+EITLLT+SAVDG+HFCAP+GHRQEDGDYRESWQPQ MS L Sbjct: 181 SGGRAGEGRIIVEGFIDFDYEITLLTISAVDGIHFCAPIGHRQEDGDYRESWQPQAMSSL 240 Query: 243 ALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQDLSEFAL 302 AL+RAQ IAR+VV LGG+GLFGVELF+ GDEV FSEVSPRPHDTGMVTLISQDLSEFAL Sbjct: 241 ALDRAQHIAREVVQNLGGFGLFGVELFIKGDEVYFSEVSPRPHDTGMVTLISQDLSEFAL 300 Query: 303 HVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVG-ADLQIRLFGKPEIDGS 361 HVRA LGLPVG I Q GP+ASAVIL + S N+ + + A+ + Q+RLF KPEI G Sbjct: 301 HVRAILGLPVGTIVQRGPSASAVILVEGESSNIGYSGLAEALAQPNTQLRLFAKPEIHGR 360 Query: 362 RRLGVALATAESVVDAIERAKHAAGQVKV 390 RRLGVALA S+ +A++ A +AG +KV Sbjct: 361 RRLGVALARGTSIDEALQTALASAGCIKV 389 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 472 Number of extensions: 18 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 392 Length adjustment: 31 Effective length of query: 361 Effective length of database: 361 Effective search space: 130321 Effective search space used: 130321 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory