Align Phosphonoacetaldehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate SM_b21539 SM_b21539 aldehyde dehydrogenase
Query= SwissProt::Q92UV7 (485 letters) >FitnessBrowser__Smeli:SM_b21539 Length = 485 Score = 963 bits (2490), Expect = 0.0 Identities = 485/485 (100%), Positives = 485/485 (100%) Query: 1 MTNAEVTIAVRHEPMRIAGRLVDTDDRVEVRYPWNDTVVGTVPAGRAEHAREAFAIAAAY 60 MTNAEVTIAVRHEPMRIAGRLVDTDDRVEVRYPWNDTVVGTVPAGRAEHAREAFAIAAAY Sbjct: 1 MTNAEVTIAVRHEPMRIAGRLVDTDDRVEVRYPWNDTVVGTVPAGRAEHAREAFAIAAAY 60 Query: 61 QPKLTRYERQKILLATAEALAARKEEISDVITLELGISKADSLYEVGRAFDVFTLAGQMC 120 QPKLTRYERQKILLATAEALAARKEEISDVITLELGISKADSLYEVGRAFDVFTLAGQMC Sbjct: 61 QPKLTRYERQKILLATAEALAARKEEISDVITLELGISKADSLYEVGRAFDVFTLAGQMC 120 Query: 121 IRDDGEIFSCDLTPHGKARKIFTMREPLTAISAITPFNHPLNMVAHKVAPAIATNNCVVV 180 IRDDGEIFSCDLTPHGKARKIFTMREPLTAISAITPFNHPLNMVAHKVAPAIATNNCVVV Sbjct: 121 IRDDGEIFSCDLTPHGKARKIFTMREPLTAISAITPFNHPLNMVAHKVAPAIATNNCVVV 180 Query: 181 KPTELTPMTALLLADILYEAGLPPEMLSVVTGWPADIGMEMITNPHVDLVTFTGSVPVGK 240 KPTELTPMTALLLADILYEAGLPPEMLSVVTGWPADIGMEMITNPHVDLVTFTGSVPVGK Sbjct: 181 KPTELTPMTALLLADILYEAGLPPEMLSVVTGWPADIGMEMITNPHVDLVTFTGSVPVGK 240 Query: 241 LIAANAHYKRQVLELGGNDPLIILNDLSDDDLARAADLAVAGATKNSGQRCTAVKRILCQ 300 LIAANAHYKRQVLELGGNDPLIILNDLSDDDLARAADLAVAGATKNSGQRCTAVKRILCQ Sbjct: 241 LIAANAHYKRQVLELGGNDPLIILNDLSDDDLARAADLAVAGATKNSGQRCTAVKRILCQ 300 Query: 301 ESVADRFVPLVLERAKRLRFGDPMDRSTDLGTVIHEKAAALFEERVMRAAEEGADILYHP 360 ESVADRFVPLVLERAKRLRFGDPMDRSTDLGTVIHEKAAALFEERVMRAAEEGADILYHP Sbjct: 301 ESVADRFVPLVLERAKRLRFGDPMDRSTDLGTVIHEKAAALFEERVMRAAEEGADILYHP 360 Query: 361 GRSGALLPPIVVDRVPHQSDLVLEETFGPIIPIVRVPDDDDATITLSNSTAFGLSSGVCT 420 GRSGALLPPIVVDRVPHQSDLVLEETFGPIIPIVRVPDDDDATITLSNSTAFGLSSGVCT Sbjct: 361 GRSGALLPPIVVDRVPHQSDLVLEETFGPIIPIVRVPDDDDATITLSNSTAFGLSSGVCT 420 Query: 421 NDYRRMQKYIAGLKVGTVNIWEVPGYRIEMSPFGGIKDSGNGYKEGVIEAMKSFTNVKTF 480 NDYRRMQKYIAGLKVGTVNIWEVPGYRIEMSPFGGIKDSGNGYKEGVIEAMKSFTNVKTF Sbjct: 421 NDYRRMQKYIAGLKVGTVNIWEVPGYRIEMSPFGGIKDSGNGYKEGVIEAMKSFTNVKTF 480 Query: 481 SLPWP 485 SLPWP Sbjct: 481 SLPWP 485 Lambda K H 0.320 0.136 0.399 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 891 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 485 Length of database: 485 Length adjustment: 34 Effective length of query: 451 Effective length of database: 451 Effective search space: 203401 Effective search space used: 203401 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory