Align D-lactate oxidase, FAD-linked subunit (EC 1.1.3.15) (characterized)
to candidate SMc00832 SMc00832 glycolate oxidase subunit protein
Query= reanno::Smeli:SMc00832 (479 letters) >lcl|FitnessBrowser__Smeli:SMc00832 SMc00832 glycolate oxidase subunit protein Length = 479 Score = 946 bits (2444), Expect = 0.0 Identities = 479/479 (100%), Positives = 479/479 (100%) Query: 1 MPETIGFLKPRQAVLDRRREIVADLADLLPEGGLISDERGLKPFETDAFIAYRRMPLAVV 60 MPETIGFLKPRQAVLDRRREIVADLADLLPEGGLISDERGLKPFETDAFIAYRRMPLAVV Sbjct: 1 MPETIGFLKPRQAVLDRRREIVADLADLLPEGGLISDERGLKPFETDAFIAYRRMPLAVV 60 Query: 61 LPETTEHVAAVLKYCSRYGIPIVPRGAGTSLSGGAIPQEDAIVVGLSKMSRTLDIDLFNR 120 LPETTEHVAAVLKYCSRYGIPIVPRGAGTSLSGGAIPQEDAIVVGLSKMSRTLDIDLFNR Sbjct: 61 LPETTEHVAAVLKYCSRYGIPIVPRGAGTSLSGGAIPQEDAIVVGLSKMSRTLDIDLFNR 120 Query: 121 TATVQAGVTNLNISDAVSADGFFYAPDPSSQLACTIGGNIGMNSGGAHCLKYGVTTNNLL 180 TATVQAGVTNLNISDAVSADGFFYAPDPSSQLACTIGGNIGMNSGGAHCLKYGVTTNNLL Sbjct: 121 TATVQAGVTNLNISDAVSADGFFYAPDPSSQLACTIGGNIGMNSGGAHCLKYGVTTNNLL 180 Query: 181 GVKMVLFDGTVIELGGKALDAPGYDLLGLVCGSEGQLGIVTEATVRLIAKPEGARPVLFG 240 GVKMVLFDGTVIELGGKALDAPGYDLLGLVCGSEGQLGIVTEATVRLIAKPEGARPVLFG Sbjct: 181 GVKMVLFDGTVIELGGKALDAPGYDLLGLVCGSEGQLGIVTEATVRLIAKPEGARPVLFG 240 Query: 241 FASSESAGSCVADIIGSGIIPVAIEFMDRPAIEICEAFAQAGYPLDVEALLIVEVEGSEA 300 FASSESAGSCVADIIGSGIIPVAIEFMDRPAIEICEAFAQAGYPLDVEALLIVEVEGSEA Sbjct: 241 FASSESAGSCVADIIGSGIIPVAIEFMDRPAIEICEAFAQAGYPLDVEALLIVEVEGSEA 300 Query: 301 EMDATLAGIIEIARRHGVMTIRESQSALEAALIWKGRKSAFGATGRIADYICMDGTVPLS 360 EMDATLAGIIEIARRHGVMTIRESQSALEAALIWKGRKSAFGATGRIADYICMDGTVPLS Sbjct: 301 EMDATLAGIIEIARRHGVMTIRESQSALEAALIWKGRKSAFGATGRIADYICMDGTVPLS 360 Query: 361 QLSHVLRRTGEIVAGYGLRVANVFHAGDGNMHPLILYNINDPEEAARAEAAGNDILKLCV 420 QLSHVLRRTGEIVAGYGLRVANVFHAGDGNMHPLILYNINDPEEAARAEAAGNDILKLCV Sbjct: 361 QLSHVLRRTGEIVAGYGLRVANVFHAGDGNMHPLILYNINDPEEAARAEAAGNDILKLCV 420 Query: 421 EAGGCLTGEHGVGIEKRDLMLHQYSRADLGQQMAARAAFDPQWLMNPSKVFPLEGRPAA 479 EAGGCLTGEHGVGIEKRDLMLHQYSRADLGQQMAARAAFDPQWLMNPSKVFPLEGRPAA Sbjct: 421 EAGGCLTGEHGVGIEKRDLMLHQYSRADLGQQMAARAAFDPQWLMNPSKVFPLEGRPAA 479 Lambda K H 0.320 0.138 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1011 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 479 Length adjustment: 34 Effective length of query: 445 Effective length of database: 445 Effective search space: 198025 Effective search space used: 198025 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory