Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate SM_b20891 SM_b20891 dehydrogenase
Query= curated2:Q2SXN9 (487 letters) >FitnessBrowser__Smeli:SM_b20891 Length = 477 Score = 238 bits (608), Expect = 3e-67 Identities = 172/466 (36%), Positives = 236/466 (50%), Gaps = 16/466 (3%) Query: 6 IDGAWVDGAGPVFASRNPG-TNERVWEGASASADDVERAVASARRAFAAWSALDLDARCT 64 I G WV G G A+ NP T++ V E A ASA+D + A+A+A+ AF AWS + R Sbjct: 8 IAGEWVGGDG--VANINPSNTDDVVGEYARASAEDAKAAIAAAKAAFPAWSRSGILERHA 65 Query: 65 IVKRFAALLVERKEALATMIGRETGKPLWEARTEVASMAAKVDISITAYHERTGEKRAPM 124 I+K+ A ++ RK+ L ++ RE GK L E E + GE + Sbjct: 66 ILKKTADEILARKDELGRLLSREEGKTLAEGIGETVRAGQIFEFFAGETLRLAGEVVPSV 125 Query: 125 ADGVAV-LRHRPHGVVAVFGPYNFPGHLPNGHIVPALIAGNTVVFKPSELAPGVARATVE 183 G+ V + P GVV + P+NFP +P + PAL GNT+VFKP+EL PG + A V+ Sbjct: 126 RPGIGVEITREPAGVVGIITPWNFPIAIPAWKLAPALCYGNTIVFKPAELVPGCSWAIVD 185 Query: 184 IWRDAGLPAGVLNLVQGEKD-TGVALANHRQIDGLFFTGSSDTGTLLHKQFGGRPEIVLA 242 I AGLP GVLNLV G+ G A+ + + + FTGS+ TG + Sbjct: 186 ILHRAGLPKGVLNLVMGKGSVVGQAMLDSPDVQAITFTGSTATGKRV-AVASVEHNRKYQ 244 Query: 243 LEMGGNNPLVVAEVEDIDAAVHHAIQSAFLSAGQRCTCARRILVPRGAFGDRFVARLADV 302 LEMGG NP VV + D+ AV A+ SAF S GQRCT + RI+V G DRFVA + + Sbjct: 245 LEMGGKNPFVVLDDADLSVAVEAAVNSAFFSTGQRCTASSRIIVTEG-IHDRFVAAMGE- 302 Query: 303 ASKITASVFD--ADPQPFMGAVISARAASRLV--AAQARLVGLGASPIIEMKQRD-PALG 357 +I V D P +G V+ ++ A + G + E+ RD P Sbjct: 303 --RIKGLVVDDALKPGTHIGPVVDQSQLNQDTDYIAIGKQEGAKLAFGGEVISRDTPGFY 360 Query: 358 FVNAAILDVTNVRELPDEEHFGPLAQIVRYTDLDDAIARANDTAFGLSAGLLADDEQAWH 417 A + TN + EE FGP+A ++R D D+A+A ANDT FGLS+G+ + Sbjct: 361 LQPALFTEATNEMRISREEIFGPVAAVIRVKDYDEALAVANDTPFGLSSGIATTSLKHAT 420 Query: 418 TFRRAIRAGIVNWNRPTNGASSAAPFGGAGRSG-NHRPSAYYAADY 462 F+R AG+V N PT G PFGG S R YAA++ Sbjct: 421 HFKRNAEAGMVMVNLPTAGVDFHVPFGGRKASSYGPREQGKYAAEF 466 Lambda K H 0.320 0.134 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 527 Number of extensions: 22 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 477 Length adjustment: 34 Effective length of query: 453 Effective length of database: 443 Effective search space: 200679 Effective search space used: 200679 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory