Align N-succinylglutamate 5-semialdehyde dehydrogenase 1; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase 1; SGSD 1 (uncharacterized)
to candidate SMa0260 SMa0260 GabD3 succinate-semialdehyde dehdyrogenase
Query= curated2:Q9AAL5 (472 letters) >FitnessBrowser__Smeli:SMa0260 Length = 487 Score = 190 bits (483), Expect = 8e-53 Identities = 158/477 (33%), Positives = 219/477 (45%), Gaps = 46/477 (9%) Query: 2 SASRLISRDPYTGEAIADFAVNDARSIDAACHSARAAFAEWAMTPLAERRAIALRFAETV 61 S S + DP TG +A+ A A +A AA A W TP +R I R+ + + Sbjct: 28 SGSGITVLDPSTGNLLAEVADASIEDAQRAVDAADAAAAGWRATPARQRSEILRRWYQLM 87 Query: 62 RARREEIATLIARETGKPMWEALTEADSVAAKVAISIRAQDERA----GE-RSEPMADAT 116 EE+ATLIA E GK AL +A A A R E A GE R P Sbjct: 88 TQHAEELATLIALENGK----ALADARGEVAYAAEFFRWYAEEATRIPGEFRHTPSGSHN 143 Query: 117 ARLAHRPHGVLAVIGPFNFPMHLANGHIVPALLAGNAVVFKPSEKTPACGQLMGELWRAA 176 + H P G+ +I P+NFP +A I PAL AG V+ KP+ +TP M L A Sbjct: 144 ILVDHEPIGIAVLITPWNFPAAMATRKIGPALAAGCTVILKPASETPLTAYAMARLGEEA 203 Query: 177 GLPDHVLTIVIGGGEAG--EALVRHEALDGVLFTGGVQAGRAIHRALADAPHKIL--ALE 232 G+P V+ ++ G A++ + + FTG GR + LA+A ++ ++E Sbjct: 204 GVPPGVVNVLTTSNPGGITNAMLADPRVRKLSFTGSTGVGRVL---LAEAAKSVVSCSME 260 Query: 233 LGGNAPLVVWDVADIEAAAHLIVQSAYVTAGQRCTCARRLILPEGARGDALLEALTMLMD 292 LGGNAP +V+D AD+E A + + AG+ CT A R + G DA + LT M Sbjct: 261 LGGNAPFIVFDDADLEVALDGAMIAKMRNAGEACTAANRFYVQAGIH-DAFVAGLTARMK 319 Query: 293 RLVIGGPFQSPAPFMGPVIDAHA-------AAQVLAAQDRMTADGGRPLRLAAVREARSA 345 L + GP P GP+I +A ++ LAA R T GG+PL Sbjct: 320 SLKL-GPGYDPETQCGPMITQNAVRKIDRLVSEALAAGARATT-GGKPL------TENGY 371 Query: 346 LLSPGLIE--LTDAPLRDEEIFGPLLQVRRAADFDAALALANATRFGLAAGLISDDEALY 403 P ++E +A + EEIFGP+ V + D A+ LAN T +GLAA + S D Sbjct: 372 FYPPTVLENVPVNASIAREEIFGPVAPVYKFESDDEAIRLANNTEYGLAAYIYSRDLKRA 431 Query: 404 RRFWTSVRAGIVNWNRPTTGASSAAPFGGVGGSGNHRPSA-----------YYAADY 449 + + G++ NR + AAPFGGV SG R Y+A DY Sbjct: 432 MKVGKRIETGMLGINRGLM-SDPAAPFGGVKQSGLGREGGVTGILEFMEPKYFAVDY 487 Lambda K H 0.320 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 603 Number of extensions: 27 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 472 Length of database: 487 Length adjustment: 34 Effective length of query: 438 Effective length of database: 453 Effective search space: 198414 Effective search space used: 198414 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory