Align Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized)
to candidate SM_b20855 SM_b20855 sugar uptake ABC transporter ATP-binding protein
Query= SwissProt::P23924 (506 letters) >lcl|FitnessBrowser__Smeli:SM_b20855 SM_b20855 sugar uptake ABC transporter ATP-binding protein Length = 504 Score = 376 bits (966), Expect = e-109 Identities = 196/493 (39%), Positives = 303/493 (61%), Gaps = 6/493 (1%) Query: 13 LLEMRGINKSFPGVKALDNVNLNVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGSIVF 72 L ++ I+KSF G+ AL +VN +VRP +HAL+GENGAGKSTL++ L G G +V Sbjct: 5 LANLKSISKSFGGIHALRSVNFDVRPGEVHALLGENGAGKSTLMRVLGGEIIPSQGEVVI 64 Query: 73 QGKEVDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYQDTKA 132 GK + ++A GI ++HQEL L SV +N++LG PT + + + + K Sbjct: 65 NGKRTELRDPRDARALGIVVIHQELALAPDLSVAENIFLGELPT---LISRFSLRRRAKQ 121 Query: 133 IFDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTII 192 + D L DIDP VGTLSV+ Q++EIAKA S + KI++ DEPT+ L ++ L II Sbjct: 122 LIDRLGFDIDPGRLVGTLSVAHQQVVEIAKALSQDIKIIVFDEPTAVLGAQDAMKLHQII 181 Query: 193 RKLKERGCGIVYISHKMEEIFQLCDEITILRDGQWIATQPLEGLDMDKIIAMMVGRSLNQ 252 R L++RG GIVYISH+++E+F + D +T+++DG+ + T + +D II MMVGR + Sbjct: 182 RGLRDRGVGIVYISHRLDEVFDIADRMTVMKDGETVGTVATTDVKIDDIIRMMVGRPIAN 241 Query: 253 RFPDKENKP-GDVILEVRHLTSLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLFG 311 FP++ + G +L V+ L + R +RDVSF + GEI+G+ GL+G+ RT++ +FG Sbjct: 242 MFPERSQRTIGAELLNVKKLNAGRM--VRDVSFSVRAGEIVGLGGLIGSGRTEVARAIFG 299 Query: 312 IREKSSGTITLHGKKINNHTANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRNYK 371 SGTI+L GK + + +A+ G LV E+R+ G+ I N+ ++ + + Sbjct: 300 ADPLDSGTISLKGKALKLKSPRDAVKAGIGLVPEDRKEHGVVIDKPIRVNATMARMSSVV 359 Query: 372 NKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPEILMLD 431 N +G L + ++D + S+R+K + SLSGGNQQKV++ +W ++++LD Sbjct: 360 NALGFLKPALERTDVTALGKSLRLKASSIDAPVSSLSGGNQQKVVLAKWFHAGGDVIILD 419 Query: 432 EPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIVDTK 491 EPTRG+DVGAK EIY LI +LA+ GK +++ISSE EL G+ DR+L M G + G + Sbjct: 420 EPTRGVDVGAKAEIYALINKLAEDGKAVLVISSEHQELFGLCDRVLAMGQGQIRGELTPS 479 Query: 492 TTTQNEILRLASL 504 ++ +L L+ + Sbjct: 480 NYSEENLLGLSMM 492 Lambda K H 0.319 0.137 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 618 Number of extensions: 23 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 504 Length adjustment: 34 Effective length of query: 472 Effective length of database: 470 Effective search space: 221840 Effective search space used: 221840 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory