Align galactofuranose ABC transporter putative ATP binding subunit (EC 7.5.2.9) (characterized)
to candidate SM_b21376 SM_b21376 sugar uptake ABC transporter ATP-binding protein
Query= ecocyc::YTFR-MONOMER (500 letters) >lcl|FitnessBrowser__Smeli:SM_b21376 SM_b21376 sugar uptake ABC transporter ATP-binding protein Length = 503 Score = 367 bits (941), Expect = e-106 Identities = 200/488 (40%), Positives = 299/488 (61%), Gaps = 2/488 (0%) Query: 9 ILRTEGLSKFFPGVKALDNVDFSLRRGEIMALLGENGAGKSTLIKALTGVYHADRGTIWL 68 IL+ ++K F V AL + +RRG + LLGENGAGKSTL+K L GV+ A G I L Sbjct: 9 ILKITDVTKSFGQVAALKGMRLEVRRGRVHTLLGENGAGKSTLMKILAGVHGATSGEIVL 68 Query: 69 EGQAISPKNTAHAQQLGIGTVYQEVNLLPNMSVADNLFIGREPKRFGLLRRKEMEKRATE 128 +GQA P N A LG+ V+QE++L N++VA+N+ REP+RFG + K + +A Sbjct: 69 DGQAYRPANPQEAASLGLAIVFQELSLCNNLTVAENILATREPRRFGFINDKALVAKAHR 128 Query: 129 LMASYGFSLDVREPLNRFSVAMQQIVAICRAIDLSAKVLILDEPTASLDTQEVELLFDLM 188 ++A +DV E + S+A +Q+V I + + AKV+ILDEPT+SL E E+LF+++ Sbjct: 129 IVADLRLPIDVTEKVGNLSIAQRQLVEIAKGLSHDAKVVILDEPTSSLSDSEAEILFEII 188 Query: 189 RQLRDRGVSLIFVTHFLDQVYQVSDRITVLRNGSFVGCRETCELPQIELVKMMLGRELDT 248 +LR RG ++I+++H ++++ ++SD ITV+R+G +V E+ L+ +M+GR +D Sbjct: 189 GRLRQRGAAIIYISHRMEEIMRLSDDITVIRDGEYVSTHARDEVTIETLIALMVGRRMDE 248 Query: 249 HALQRAGRTLLSDKPVAAFKNYGKKGTIAPFDLEVRPGEIVGLAGLLGSGRTETAEVIFG 308 PV A ++G +VR GEI+G GL+GSGR+E +FG Sbjct: 249 IYPPPVHHVAADRAPVLAVDRLTREGEFQDVSFDVRAGEILGFFGLVGSGRSEVMNALFG 308 Query: 309 IKPADSGTALIKGKPQNLRSPHQASVLGIGFCPEDRKTDGIIAAASVRENIILALQAQ-R 367 +K A +GT + G+ RSP QA G+GF E+RK +G++ SV NI +A A Sbjct: 309 MKSA-AGTVRLDGEVVRFRSPDQAIARGVGFVTENRKEEGLVLGHSVEWNISMAALADFA 367 Query: 368 GWLRPISRKEQQEIAERFIRQLGIRTPSTEQPIEFLSGGNQQKVLLSRWLLTRPQFLILD 427 G L I ++ A + +L I+T S E P LSGGNQQK++L++WLLTRP+ LILD Sbjct: 368 GGLGFIRNGAERAAASEQVGKLSIKTNSLETPAGALSGGNQQKIVLAKWLLTRPKVLILD 427 Query: 428 EPTRGIDVGAHAEIIRLIETLCADGLALLVISSELEELVGYADRVIIMRDRKQVAEIPLA 487 EPTRG+DVGA EI ++I L A+G A+L+ISS+L E++G +DRV++M + A + + Sbjct: 428 EPTRGVDVGAKFEIYKIIRELAAEGTAILLISSDLPEVLGMSDRVVVMHEGAPGATLEGS 487 Query: 488 ELSVPAIM 495 L+ IM Sbjct: 488 ALTPETIM 495 Lambda K H 0.321 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 623 Number of extensions: 39 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 503 Length adjustment: 34 Effective length of query: 466 Effective length of database: 469 Effective search space: 218554 Effective search space used: 218554 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory