Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate SM_b20378 SM_b20378 aldehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >lcl|FitnessBrowser__Smeli:SM_b20378 SM_b20378 aldehyde dehydrogenase Length = 487 Score = 449 bits (1156), Expect = e-131 Identities = 229/474 (48%), Positives = 306/474 (64%), Gaps = 1/474 (0%) Query: 4 VTYTDTQLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWR 63 V Y +LIDG W+ A T +VV+PATG+ I R+ A ++ A+A++Q FE+W+ Sbjct: 8 VPYERLGILIDGRWIYEAERST-EVVDPATGQTIARLPFAADGEIAEAVASSQRAFESWK 66 Query: 64 KVPAHERAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRR 123 ER +R+ A L R+ AD IA+ MT++QGKPL+EA E+ AAD +W A+E RR Sbjct: 67 DRSPLERGRILRRFADLARKHADEIARNMTRDQGKPLSEAIGEIRFAADHADWHAEEARR 126 Query: 124 VYGRIVPPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEET 183 +YGR++P R+ QQ V++EPVG AFTPWNFP +Q +RK+ AALA+GC+ ++K P E+ Sbjct: 127 IYGRVIPARDPRVQQMVLREPVGVCIAFTPWNFPFSQALRKVVAALASGCTIILKGPGES 186 Query: 184 PASPAALLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLA 243 P+S A+ R +AG+P G + +++GDPA +S L+ P +RK++FTGS VGK LASLA Sbjct: 187 PSSTVAIGRLMQEAGLPDGCLNILWGDPAHLSETLLAAPEVRKISFTGSVEVGKHLASLA 246 Query: 244 GLHMKRATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEF 303 G HMKR+TMELGGHAPVI+ +DAD+ A A G K RNAGQVCISPTRF V D F Sbjct: 247 GRHMKRSTMELGGHAPVILFDDADIEAAADALAGQKVRNAGQVCISPTRFYVQAKGHDRF 306 Query: 304 TRALVKHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEG 363 + +VGNG +E +G L + RR+ AM I +AR+ GA I TGGER+G+ G Sbjct: 307 LARFAEKIASTRVGNGFQESVQMGPLCHGRRVAAMEGFIQDAREQGAEIVTGGERVGNAG 366 Query: 364 NFFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFAN 423 F+APTV+A + + EPFGP+A + F +E I AN LPFGLA Y FT S + Sbjct: 367 FFYAPTVVAAGTDELRLMKEEPFGPIAVVTPFGDFDEVIRRANSLPFGLASYVFTGSSSR 426 Query: 424 VHLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVT 477 + L GM+ +N PE PFGG+ DSGYGSEGG E + YL TK VT Sbjct: 427 AQNAARALAAGMVSVNHFGLALPETPFGGINDSGYGSEGGSETFDGYLNTKFVT 480 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 681 Number of extensions: 26 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 487 Length adjustment: 34 Effective length of query: 447 Effective length of database: 453 Effective search space: 202491 Effective search space used: 202491 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory