GapMind for catabolism of small carbon sources

 

Aligments for a candidate for dctM in Sinorhizobium meliloti 1021

Align Putative TRAP dicarboxylate transporter, DctM subunit (characterized, see rationale)
to candidate SMa0250 SMa0250 dedA-like protein

Query= uniprot:Q88NP0
         (426 letters)



>lcl|FitnessBrowser__Smeli:SMa0250 SMa0250 dedA-like protein
          Length = 425

 Score =  310 bits (794), Expect = 5e-89
 Identities = 166/418 (39%), Positives = 260/418 (62%), Gaps = 3/418 (0%)

Query: 1   MEAFILLGSFIVLILIGMPVAYALGLSALIGAWWIDI-PLQAMMIQVASGVNKFSLLAIP 59
           M   + + S +  + IG+PVA++L    ++  W++ +   Q +   + +G + F+LLAIP
Sbjct: 1   MTLVVFIVSLLGAMAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIP 60

Query: 60  FFVLAGAIMAEGGMSRRLVAFAGVLVGFVRGGLSLVNIMASTFFGAISGSSVADTASVGS 119
           FF+LAG +M  GG+SRR++ FA   VG +RGGL +V IMA+    +ISGS+ ADTA++ +
Sbjct: 61  FFILAGELMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAA 120

Query: 120 VLIPEMERKGYPREFSTAVTVSGSVQALLTPPSHNSVLYSLAAGGTVSIASLFMAGIMPG 179
           +LIP M + GY    S  +  +G V A + PPS   +++ +AA   VSI  LFMAGI+PG
Sbjct: 121 ILIPMMAKAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAAN--VSITQLFMAGIVPG 178

Query: 180 LLLSAVMMGLCLIFAKKRNYPKGEVIPLREALKIAGEALWGLMAMVIILGGILSGVFTAT 239
           L++   ++   L+  +K +       P++E +   G ALW L   VIILGGI +GV T T
Sbjct: 179 LIMGIALVATWLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPT 238

Query: 240 ESAAVAVVWSFFVTMFIYRDYKWRDLPKLMHRTVRTISIVMILIGFAASFGYVMTLMQIP 299
           E+A VA V++ FV M IYR+ K RDLP ++ +  +T +++M L+  A    +++T   IP
Sbjct: 239 EAAVVAAVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIP 298

Query: 300 SKITTAFLTLSDNRYVILMCINFMLMLLGTVMDMAPLILILTPILLPVITGIGVDPVHFG 359
           S+IT     L D   +++  I  +++++GT +D+ P ILILTP+L+P+I   G+DPV+FG
Sbjct: 299 SEITGFISPLIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFG 358

Query: 360 MIMLVNLGIGLITPPVGAVLFVGSAIGKVSIESTVKALMPFYLALFLVLMAVTYIPAI 417
           ++ ++N  IGL+TPPVG VL V S +G+V +   +  + PF +A  LVL  +   P I
Sbjct: 359 VLFIMNTCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDI 416


Lambda     K      H
   0.329    0.142    0.418 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 571
Number of extensions: 35
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 426
Length of database: 425
Length adjustment: 32
Effective length of query: 394
Effective length of database: 393
Effective search space:   154842
Effective search space used:   154842
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory