Align Transmembrane component of a broad range amino acid ABC transporter (characterized, see rationale)
to candidate SMc01950 SMc01950 high-affinity branched-chain amino acid ABC transporter permease
Query= uniprot:Q1MCU1 (463 letters) >FitnessBrowser__Smeli:SMc01950 Length = 461 Score = 722 bits (1863), Expect = 0.0 Identities = 363/463 (78%), Positives = 411/463 (88%), Gaps = 2/463 (0%) Query: 1 MANIENSAGKPDAGLVRKGLTEALFAAVLSFGMFVLYVGLKTDQNISNELIIVQRWGLLA 60 MAN+ ++ + L + L EA+FA +++ GMFVL+VGLKTDQNI NELI+ QRWGLLA Sbjct: 1 MANVASTTASAGSELTARALREAVFAGLITLGMFVLFVGLKTDQNIRNELILTQRWGLLA 60 Query: 61 IFVAVAAIGRFAMVVFIRPNIDRRKLSKAREGELDISTEKSFFHRHFLKIALIALLLYPM 120 FVA+A +GRF MV +++P + +RK +KA D+ E++FF R++ KIA+I LL+YP Sbjct: 61 TFVAIAMVGRFLMVAYVQPRLAQRKAAKAAAP--DVVKEETFFSRNWSKIAVILLLIYPP 118 Query: 121 VVVAIKGPQGSLTYVDNFGIQILIYVMLAWGLNIVVGLAGLLDLGYVAFYAVGAYSYALL 180 V+VA+ G QGSL +VDNFGIQILIYVMLAWGLNIVVGLAGLLDLGYVAFYAVGAYSYALL Sbjct: 119 VIVALVGVQGSLKWVDNFGIQILIYVMLAWGLNIVVGLAGLLDLGYVAFYAVGAYSYALL 178 Query: 181 SSYFGLSFWVLLPLSGIFAALWGVILGFPVLRLRGDYLAIVTLAFGEIIRLVLINWTDVT 240 SSYFGLSFWVLLP++G+ AA WGV+LGFPVLRLRGDYLAIVTLAFGEIIRLVLINWT+VT Sbjct: 179 SSYFGLSFWVLLPIAGLLAACWGVVLGFPVLRLRGDYLAIVTLAFGEIIRLVLINWTEVT 238 Query: 241 KGTFGISSIPKATLFGIPFDATAGGFAKLFHLPISSAYYKIFLFYLILALCMLTAYVTIR 300 KGTFG+S I KATLFGI FDAT GFA + LP+SSAYYKIFLFYLIL L +LTA+VTIR Sbjct: 239 KGTFGVSGIAKATLFGIKFDATKDGFAAMMGLPMSSAYYKIFLFYLILGLALLTAFVTIR 298 Query: 301 LRRMPIGRAWEALREDEIACRSLGINTVTTKLTAFATGAMFAGFAGSFFAARQGFVSPES 360 LRRMPIGRAWEALREDEIACRSLGINTVTTKLTAFATGAMF GFAGSFFA RQGFVSPES Sbjct: 299 LRRMPIGRAWEALREDEIACRSLGINTVTTKLTAFATGAMFGGFAGSFFAVRQGFVSPES 358 Query: 361 FVFLESAVILAIVVLGGMGSLTGIAIAAIVMVGGTELLREMSFLKLIFGPDFTPELYRML 420 FVFLESAVILAIVVLGGMGSLTGIAIAA+VM+GGTE+LRE++FLK+IFGP FTPELYRML Sbjct: 359 FVFLESAVILAIVVLGGMGSLTGIAIAAVVMIGGTEILRELTFLKMIFGPTFTPELYRML 418 Query: 421 IFGLAMVVVMLFKPRGFVGSREPTAFLRERKAISGSFIKEGHG 463 IFGLAMVVVM++KPRGFVGSREPTAFLRER+AISGSF KEGHG Sbjct: 419 IFGLAMVVVMVWKPRGFVGSREPTAFLRERRAISGSFTKEGHG 461 Lambda K H 0.330 0.145 0.432 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 846 Number of extensions: 32 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 463 Length of database: 461 Length adjustment: 33 Effective length of query: 430 Effective length of database: 428 Effective search space: 184040 Effective search space used: 184040 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory