Align Dihydrolipoyl dehydrogenase (EC 1.8.1.4) (characterized)
to candidate SM_b20820 SM_b20820 ferredoxin reductase
Query= reanno::pseudo6_N2E2:Pf6N2E2_478 (461 letters) >FitnessBrowser__Smeli:SM_b20820 Length = 409 Score = 72.4 bits (176), Expect = 3e-17 Identities = 77/251 (30%), Positives = 120/251 (47%), Gaps = 24/251 (9%) Query: 66 RHHSQGSALGITVSAPSLDIGKSVEWKDGIVD----RLTTGVAALLKKHKVQVIHG-WAK 120 R G + +T + P L + KDG+ + G AA ++ ++ V+ G A+ Sbjct: 21 REKGFGGEITLTGAEPHLPYERPPLSKDGLAQASLPKFIAG-AARYEEARITVLTGVTAE 79 Query: 121 VIDG--KTVEVGD-TRIQCEHLLLATGSKSVDLPMLPVGGPIISS----TEALA---PTS 170 ID K V + D + + LLLATG++ P +P I + +ALA + Sbjct: 80 SIDRVHKAVTLSDGVSLDYDRLLLATGARPRAFPRVPENAGRIRTLRTHADALAIRGALT 139 Query: 171 VPKHLVVVGGGYIGLELGIAYRKLGAEVSVVEAQERILP-AYDGELTQPVHEALKQLGVK 229 L V+GGG+IGLEL RKLGAEV +VE R+L E+ V E ++ GV+ Sbjct: 140 PGARLAVIGGGFIGLELAATARKLGAEVVLVEGLPRVLSRGVPEEIAVLVAERHRREGVE 199 Query: 230 LYLKHSVEGFDAQASTLQVRDPAGDTLNLDTDRVLVAVGRKPNTQGWNLEALNLAM-NGA 288 + + D ++ D ++++ D ++V +G PNT+ EA LA+ NG Sbjct: 200 IICGAQIAAIDGAGDGARLL--LADGVDIEADLIVVGIGAVPNTE--LAEAAGLAIENGI 255 Query: 289 AVKIDQRCQTS 299 AV D+R TS Sbjct: 256 AV--DERLCTS 264 Score = 29.3 bits (64), Expect = 3e-04 Identities = 26/111 (23%), Positives = 49/111 (44%), Gaps = 17/111 (15%) Query: 174 HLVVVGGGYIGLELGIAYRK--LGAEVSVVEAQERILPAYDGELTQPVHEALKQLGVKLY 231 H+V++G G G A R+ G E+++ A+ LP L++ + L Q + + Sbjct: 3 HIVIIGAGECGARAAFALREKGFGGEITLTGAEPH-LPYERPPLSK---DGLAQASLPKF 58 Query: 232 LKHSVEGFDAQASTL-----------QVRDPAGDTLNLDTDRVLVAVGRKP 271 + + +A+ + L D ++LD DR+L+A G +P Sbjct: 59 IAGAARYEEARITVLTGVTAESIDRVHKAVTLSDGVSLDYDRLLLATGARP 109 Score = 28.9 bits (63), Expect = 3e-04 Identities = 31/109 (28%), Positives = 47/109 (43%), Gaps = 15/109 (13%) Query: 4 TLNTTLLIIGGGPGGYVAAIRAGQLGIPTILVEGQALGGTCLNIGCIPSKALIHVAEQFH 63 T L +IGGG G A A +LG +LVEG L+ G +P + + VAE Sbjct: 139 TPGARLAVIGGGFIGLELAATARKLGAEVVLVEGLP---RVLSRG-VPEEIAVLVAE--- 191 Query: 64 QTRHHSQGSALGITVSAPSLD---IGKSVEWKDGI---VDRLTTGVAAL 106 RH +G + ++D G + DG+ D + G+ A+ Sbjct: 192 --RHRREGVEIICGAQIAAIDGAGDGARLLLADGVDIEADLIVVGIGAV 238 Lambda K H 0.318 0.135 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 409 Number of extensions: 19 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 461 Length of database: 409 Length adjustment: 32 Effective length of query: 429 Effective length of database: 377 Effective search space: 161733 Effective search space used: 161733 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory