Align Lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial; Branched-chain alpha-keto acid dehydrogenase complex component E2; BCE2; BCKAD-E2; BCKADE2; Dihydrolipoamide acetyltransferase component of branched-chain alpha-keto acid dehydrogenase complex; Dihydrolipoamide branched chain transacylase; Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase; Protein DARK INDUCIBLE 3; EC 2.3.1.168 (characterized)
to candidate SM_b20019 SM_b20019 dihydrolipoamide succinyltransferase
Query= SwissProt::Q9M7Z1 (483 letters) >FitnessBrowser__Smeli:SM_b20019 Length = 378 Score = 137 bits (345), Expect = 6e-37 Identities = 115/392 (29%), Positives = 185/392 (47%), Gaps = 42/392 (10%) Query: 74 GLIDV--PLAQTGEGIAECELLKWFVKEGDSVEEFQPLCEVQSDKATIEITSRFKGKVAL 131 G ID+ PL Q G + + W K GD V+ PL E+++DK T E+++ G +A Sbjct: 3 GFIDIQAPLEQEG---TKAVVRNWLRKIGDPVKSGDPLVELETDKVTQEVSAPADGVLAE 59 Query: 132 ISHSPGDIIKVGETLVRLAVEDSQDSLLTTDSSEIVTLGGSKQGTENLLGALSTPAVRNL 191 I GD G L R+ SE G + +PAVR+ Sbjct: 60 ILMRNGDDATPGAVLGRIG-------------SEAAGAGHAPH---------YSPAVRHA 97 Query: 192 AKDLGIDINVITGTGKDGRVLKEDVLRFSDQKGFVTDSVSSEHAVIGGDSVSTKASSNFE 251 A++ G+D +TGTG+ GRV + D+ R + SV++E GD + S Sbjct: 98 AEEYGLDPATVTGTGRGGRVTRADMDRAFTARQEGPASVAAE----AGDRGAAPKS---- 149 Query: 252 DKTVPLRGFSRAMVKTM-TMATSVPHFHFVEEINCDSLVELKQFFKENNTDSTIKHTFLP 310 + +P G A+ + M T+ PH V E + +++ + + K ++ Sbjct: 150 -RRIPHSGMRAAIAEHMLNSVTTAPHVTAVFEADFSAVMRHRDEHGKRLAADGTKLSYTA 208 Query: 311 TLIKSLSMALTKYPFVNSCFNAESLEIILKGSHNIGVAMATEHGLVVPNIKNVQSLSLLE 370 ++ + A+ P VNS ++ ++LE + +G+++ + GLVVP I Q LSL E Sbjct: 209 YVVSACVAAMRAVPEVNSRWHEDALETFDDINIGVGISLG-DKGLVVPVIHRAQDLSLAE 267 Query: 371 ITKELSRLQHLAANNKLNPEDVTGGTITLSNIGAIGGKFGSP-LLNLPEVAIIALGRIEK 429 I L L A +N L+ DVTGGT T+SN GA G +P ++N P+ AI+ +G+++K Sbjct: 268 IAARLQDLTTRARSNALSRADVTGGTFTISNHGASGSLLAAPIIINQPQSAILGVGKLDK 327 Query: 430 ---VPKFSKEGTVYPASIMMVNIAADHRVLDG 458 V + T+ + V++ DHR LDG Sbjct: 328 RVIVREVDGADTIQIRPMAYVSLTIDHRALDG 359 Lambda K H 0.317 0.132 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 376 Number of extensions: 19 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 378 Length adjustment: 32 Effective length of query: 451 Effective length of database: 346 Effective search space: 156046 Effective search space used: 156046 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory