Align Putative acyl-CoA dehydrogenase AidB; EC 1.3.99.- (characterized)
to candidate SMc01359 SMc01359 oxidoreductase
Query= SwissProt::P33224 (541 letters) >lcl|FitnessBrowser__Smeli:SMc01359 SMc01359 oxidoreductase Length = 550 Score = 411 bits (1057), Expect = e-119 Identities = 231/509 (45%), Positives = 303/509 (59%), Gaps = 5/509 (0%) Query: 10 NQPIPLNNSNLYLSDGALCEAVTREGAGWDSDFLASIGQQLGTAESLELGRLANVNPPEL 69 NQP P + N + SD + + +T D +G+ + + E+ EL R+AN P+L Sbjct: 15 NQPKPWSGVNAFRSDPLVVD-ITSSMPKTLRDEFDGLGRYVTSPEAQELARMANEGVPKL 73 Query: 70 LRYDAQGRRLDDVRFHPAWHLLMQALCTNRVHNLAWEE--DARSGAFVARAARFMLHAQV 127 + +G RLD V FHPAWH LM+ T +H+ AWE D R + RA RF L AQ+ Sbjct: 74 KTHGPRGERLDVVEFHPAWHALMRRSMTTGLHSSAWENLPDERGRSHKVRAIRFYLTAQL 133 Query: 128 EAGSLCPITMTFAATPLLLQMLPAPFQDWTTPLLSDRYDSHLLPGGQKRGLLIGMGMTEK 187 E G LCP+TMT A+ + PA ++W +LS +YDS P QK + IGMGMTEK Sbjct: 134 ECGHLCPLTMTSASVAAITAS-PAVQKEWAPKILSRKYDSSNRPWMQKSAVTIGMGMTEK 192 Query: 188 QGGSDVMSNTTRAERLEDGSYRLVGHKWFFSVPQSDAHLVLAQTAGGLSCFFVPRFLPDG 247 QGG+DV +NT+ AER+ +G YRL GHKWF S P SDA ++LAQT GL CF VPR L DG Sbjct: 193 QGGTDVRANTSTAERVGEGIYRLTGHKWFMSAPMSDAFVMLAQTREGLGCFLVPRLLEDG 252 Query: 248 QRNAIRLERLKDKLGNRSNASCEVEFQDAIGWLLGLEGEGIRLILKMGGMTRFDCALGSH 307 N +R +RLKDKLGNRSNAS EVEF D G+LLG GIR IL M +TR DCAL S Sbjct: 253 GANGLRFQRLKDKLGNRSNASSEVEFSDTFGFLLGTPDAGIRTILDMVTLTRLDCALASA 312 Query: 308 AMMRRAFSLAIYHAHQRHVFGNPLIQQPLMRHVLSRMALQLEGQTALLFRLARAWDR-RA 366 MMR + + A++H R VFG L+ QP+M VL+ MAL + +AL FRLA A+D + Sbjct: 313 GMMRASLAEAVHHTRGRKVFGKALVSQPMMTRVLADMALDVAAASALSFRLAEAFDNAHS 372 Query: 367 DAKEALWARLFTPAAKFVICKRGMPFVAEAMEVLGGIGYCEESELPRLYREMPVNSIWEG 426 A++A +AR+ TP AK+ CK + EAME +GG GY EE L R YRE PVN+IWEG Sbjct: 373 SAEDAAYARIMTPVAKYWCCKIAPALIYEAMECMGGNGYVEERALARHYREAPVNAIWEG 432 Query: 427 SGNIMCLDVLRVLNKQAGVYDLLSEAFVEVKGQDRYFDRAVRRLQQQLRKPAEELGREIT 486 SGN+M LDVLRVL ++ +++ L G V R L + E R + Sbjct: 433 SGNVMALDVLRVLGRRKELFEQLFATIGRDLGPAGRKTIEVLRAAMSLCERDEGAARMLV 492 Query: 487 HQLFLLGCGAQMLKYASPPMAQAWCQVML 515 QL L A++ + + +A A+ + L Sbjct: 493 EQLALAAAAAELYRLGAGRIADAFLESRL 521 Lambda K H 0.324 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 685 Number of extensions: 26 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 541 Length of database: 550 Length adjustment: 35 Effective length of query: 506 Effective length of database: 515 Effective search space: 260590 Effective search space used: 260590 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory