Align L-lysine transport protein (characterized)
to candidate SMa1668 SMa1668 ArcD2 arginine/ornithine antiporter
Query= CharProtDB::CH_019644 (501 letters) >lcl|FitnessBrowser__Smeli:SMa1668 SMa1668 ArcD2 arginine/ornithine antiporter Length = 473 Score = 371 bits (953), Expect = e-107 Identities = 199/487 (40%), Positives = 295/487 (60%), Gaps = 17/487 (3%) Query: 17 SRTVSIRTLIALIIGSTVGAGIFSIPQNIGSVAGPGAMLIGWLIAGVGMLSVAFVFHVLA 76 ++ +S+ L +++GS VGAGIFS+P+ G GP +I W IAG GM +A VF LA Sbjct: 2 AQKLSLFALTGMVVGSMVGAGIFSLPRTFGVATGPFGAIIAWCIAGGGMYMLARVFQSLA 61 Query: 77 RRKPHLDSGVYAYARVGLGDYVGFSSAWGYWLGSVIAQVGYATLFFSTLGHYVPLFSQDH 136 RKP LD+GV+AYA+ G GDY GF SA+GYW+GS I V Y L STLG++ P+F + Sbjct: 62 ERKPDLDAGVFAYAKEGFGDYPGFLSAFGYWIGSCIGNVSYWVLIKSTLGNFFPVFGDGN 121 Query: 137 PFVSALAVSALTWLVFGVVSRGISQAAFLTTVTTVAKILPLLCFIILVAFLGFSWEKFTV 196 V+ L S WL ++ RGI QAAF+ TV TVAK++P++ FII++ F F + F + Sbjct: 122 TVVAILFASVGIWLFHFMILRGIQQAAFVNTVVTVAKVIPIIAFIIILFFF-FKLDLFRL 180 Query: 197 DLWARDG-GVGSIFDQVRGIMVYTVWVFIGIEGASVYSRQARSRSDVSRATVIGFVAVLL 255 + W +G ++ Q++ M+ TV+VFIGIEGAS YSR A++RSD+ AT++GF+ V Sbjct: 181 NFWGGEGMPEATLLQQIQATMLATVFVFIGIEGASNYSRYAQARSDIGTATIMGFIGVSA 240 Query: 256 LLVSISSLSFGVLTQQELAALPDNSMASVLEAVVGPWGAALISLGLCLSVLGAYVSWQML 315 L+V ++ L + LT+ E+AA+ SMA VL AVVGPWGA IS+G+ +SVLGAY++W ++ Sbjct: 241 LMVLVTLLPYAALTRPEIAAMSQPSMAGVLAAVVGPWGAVFISIGVIVSVLGAYLAWSLV 300 Query: 316 CAEPLALMAMDGLIPSKIGAINSRGAAWMAQLISTIVIQIFIIIFFLNETTYVSMVQLAT 375 CAE L + A +P G N A ++ IV+Q+F+I + ++ + M+ L + Sbjct: 301 CAEVLYVAARTDDMPRLFGTENQNKVPAAALWLTNIVVQLFVISTYWSQDAFALMLNLTS 360 Query: 376 NLYLVPYLFSAFYLVMLATRGKGITHPHAGTRFDDSGPEISRRENRKHLIVGLVATVYSV 435 ++ L+PY+F A + MLA R + E+ RE + LI+ +A VY+ Sbjct: 361 SMSLIPYMFVAAFGFMLAQRAETY--------------EVRPRERTRDLIIASIAAVYTF 406 Query: 436 WLFYAAEPQFVLFGAMAMLPGLIPYVWTRIYRGEQVFN-RFEIGVVVVLVVAASAGVIGL 494 ++ A +FVL A+ PG I Y W R RG++VFN + + V+ A +IGL Sbjct: 407 FMIVAGGIKFVLLSALLYAPGTILYFWARRERGKRVFNTSIDWLIFATAVIGCFAAIIGL 466 Query: 495 VNGSLSL 501 G L++ Sbjct: 467 STGYLTI 473 Lambda K H 0.327 0.139 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 676 Number of extensions: 43 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 473 Length adjustment: 34 Effective length of query: 467 Effective length of database: 439 Effective search space: 205013 Effective search space used: 205013 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory