GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lysN in Sinorhizobium meliloti 1021

Align 2-aminoadipate transaminase (EC 2.6.1.39) (characterized)
to candidate SM_b21186 SM_b21186 4-aminobutyrate aminotransferase

Query= reanno::Putida:PP_4108
         (416 letters)



>FitnessBrowser__Smeli:SM_b21186
          Length = 422

 Score =  344 bits (882), Expect = 3e-99
 Identities = 184/415 (44%), Positives = 252/415 (60%), Gaps = 11/415 (2%)

Query: 5   SISQSIAIVHPITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRL 64
           +IS+ + +   +      NAE+WD +G RYIDF  GI V+N GH +P V+ A++AQ  R 
Sbjct: 11  AISRGVGMTTQVYADRAENAEIWDKEGNRYIDFAAGIAVVNTGHRHPKVIAAVKAQLDRF 70

Query: 65  THYAFNAAPHGPYLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVARGATGKRAIIA 124
           TH      P+  Y+ L E+L+  VP  +    +   +GAEA ENA+K+AR ATG++A++A
Sbjct: 71  THTCHQVVPYENYVHLAERLNAIVPGDFAKKTIFVTTGAEAVENAVKIARAATGRQAVVA 130

Query: 125 FDGGFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSV 184
           F GGFHGRT   + L GKV PYK   G +P  V+H P+P    GVT EQ+L A+ +LF+ 
Sbjct: 131 FGGGFHGRTFMGMALTGKVVPYKVGFGAMPADVFHAPFPIELHGVTVEQSLSALKKLFAA 190

Query: 185 ELAVEDVAAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFA 244
           ++    VAA I EPVQGEGGF  +  AF +ALR  CD+ GIL+I DE+Q+GF RTG+ FA
Sbjct: 191 DVDPARVAAIIIEPVQGEGGFYPVPTAFMKALREVCDQHGILLIADEVQTGFARTGKLFA 250

Query: 245 FPRLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLA 304
               G+ PDL  +AKS+AGG PL AV GR E+M A   GGLGGTY GNP+  AAA A L 
Sbjct: 251 MEHHGVAPDLTTMAKSLAGGFPLAAVTGRAEIMDAPGPGGLGGTYGGNPLGIAAAHAVLD 310

Query: 305 QMTDENLA----TWGERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPA 360
            + +ENL       G R +Q + +  E+      +P I  + G G M  +EF +   +  
Sbjct: 311 VIAEENLCERANQLGNRLKQRLAAIREK------APEIVDIRGPGFMNAVEFNDVRTNLP 364

Query: 361 PAQLA-KVMEAARARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAE 414
            A+ A KV   A  +GL+L+  G   ++IR LAP+TI+ EV  E LD +E  + E
Sbjct: 365 SAEFANKVRLLALEKGLILLTCGVHGNVIRFLAPITIQDEVFAEALDTIEASILE 419


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 534
Number of extensions: 18
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 422
Length adjustment: 32
Effective length of query: 384
Effective length of database: 390
Effective search space:   149760
Effective search space used:   149760
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory