Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate SMc00884 SMc00884 dihydroxy-acid dehydratase
Query= curated2:P31961 (608 letters) >FitnessBrowser__Smeli:SMc00884 Length = 574 Score = 199 bits (507), Expect = 2e-55 Identities = 161/510 (31%), Positives = 250/510 (49%), Gaps = 44/510 (8%) Query: 105 AGGVPAMCDGVTQGEPGME-LSLASRDVIAMSTAIALSHNMFDAALCLGVCDKIVPGLLI 163 AGG P + GE M ++ R+++AM A+ D + LG CDK PG L+ Sbjct: 74 AGGFPVEFPVSSLGETQMRPTAMLFRNLLAMDVEEAIRAYGIDGVVLLGGCDKTTPGQLM 133 Query: 164 GSLRFGHLPTVFVPAGPMPTGI-------SNKEKAAVRQLFAEGKATREELLASEMASYH 216 G+ LPT+ V +GPM G S + + G+ + +E +A+E Sbjct: 134 GAASVD-LPTIVVSSGPMLNGKWKGKDIGSGTDVWKFSEAVRAGEMSLQEFMAAESGMSR 192 Query: 217 APGTCTFYGTANTNQLLVEVMGLHLPGASFVNPNTPLRDELTREAARQASRLTPENGNYV 276 +PG C GTA T +VE MGL LP + + R L+ ++ + E+ + Sbjct: 193 SPGVCMTMGTATTMASIVEAMGLSLPTNAALPAVDARRMALSHMTGKRIVEMVHED---L 249 Query: 277 PMAEIVDEKAIVNSVVALLATGGSTNHTLHLLAIAQAAGIQLTWQDMSELSHVVPTLARI 336 +++I+ ++ N ++A A GGSTN +H+LAIA AGI L +D + VP + Sbjct: 250 RLSKILTKENFENGIIANAAVGGSTNAVVHMLAIAGRAGIDLCLEDFDRVGGQVPCIVNC 309 Query: 337 YPNGQADINHFQAAGGMSFLIRQLLDGGLLHEDVQTVAGPGLRRYTREPFLEDGRLVWRE 396 P+G+ I AGG+ ++ ++ LLH D TV G + +Y W E Sbjct: 310 MPSGKYLIEDLAYAGGLPAVMNRIQH--LLHPDAPTVFGVPISKY------------W-E 354 Query: 397 GPERSLDEAILRPLDKPFSAEGGLRLMEGNLGRG--VMKVSAVAPEHQVVEAPVRIFHDQ 454 E D+ ++RPLD P A G+R+++GNL V+K SA + E P +F Sbjct: 355 AAEVYNDD-VIRPLDNPLRAAAGIRVLKGNLAPNGAVIKPSAASEHLLAHEGPAYVFDTI 413 Query: 455 ASLAAAFKAGELE--RDLVAVVRFQGPRAN-GMPELHKLTPFLGVLQDRGFK-VALVTDG 510 L A +L D + V++ GP+ GM E+ + P L ++G + + ++D Sbjct: 414 EDLRAKIDDPDLPVTEDTILVLKGCGPKGYPGMAEVGNM-PIPRRLVEKGVRDMVRISDA 472 Query: 511 RMSG-ASGKVPAAIHVSPEAIAGGPLARLRDGDRVRVDGVNGELRVLVDDAEWQAR--SL 567 RMSG A G V +HVSPEA AGGPLA +R GDR+R+D + GEL +LV + E AR + Sbjct: 473 RMSGTAFGTV--VLHVSPEANAGGPLAIVRTGDRIRLDALKGELNLLVSEEELAARMAAW 530 Query: 568 EPAPQDGNLGCGRELFAFMRNAMSSAEEGA 597 +P Q + G + + + A++GA Sbjct: 531 QPPEQKWHRG----YYKLYHDTVLQADKGA 556 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 814 Number of extensions: 49 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 574 Length adjustment: 37 Effective length of query: 571 Effective length of database: 537 Effective search space: 306627 Effective search space used: 306627 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory