Align Mannitol dehydrogenase DSF1; Deletion suppressor of MPT5 mutation protein 1; EC 1.1.1.67 (characterized)
to candidate SM_b20749 SM_b20749 D-mannonate oxidoreductase
Query= SwissProt::P0CX08 (502 letters) >FitnessBrowser__Smeli:SM_b20749 Length = 487 Score = 363 bits (933), Expect = e-105 Identities = 198/489 (40%), Positives = 292/489 (59%), Gaps = 12/489 (2%) Query: 12 LNAKTLKSFESTLPIPTYPREGVKQGIVHLGVGAFHRSHLAVFMHRLMQEHHLKDWSICG 71 L+ KT+ T+ P Y V GIVHLG+GAFHR+H AV+ L+ E W ICG Sbjct: 3 LSRKTIDRLPRTVKRPHYDLGTVTVGIVHLGIGAFHRAHQAVYTDGLLSED--PSWGICG 60 Query: 72 VGLMKADALMRDAMKAQDCLYTLVERGIKDTNAYIVGSITAYMYAPDDPRAVIEKMANPD 131 V L + RDA+ QD LYTL + + + +VGS+ + APDDP AV+ +MA+P Sbjct: 61 VSLRSPET--RDALHPQDGLYTLAVQDGEGSELSVVGSVVELLCAPDDPEAVLRRMADPG 118 Query: 132 THIVSLTVTENGYYHSEATNSLMTDAPEIINDLNHPEKPDTLYGYLYEALLLRYKRGLTP 191 T IVSLT+TE GY H+ AT +L P+I++DL +P +P + G++ EA+ R G+ P Sbjct: 119 TRIVSLTITEKGYCHNPATGTLDEGHPDIVHDLANPARPRSAIGFIVEAISRRVSAGIAP 178 Query: 192 FTIMSCDNMPQNGVTVKTMLVAFAKLKKDEKFAAWIEDKVTSPNSMVDRVTPRCTDKERK 251 FT++SCDN+P NG +K ++ FA+ + D AA + + V SP++MVDR+ P TD +R Sbjct: 179 FTLLSCDNLPGNGHVLKRIVTQFAEAR-DPALAAVVRN-VASPSTMVDRIVPATTDSDRS 236 Query: 252 YVADTWGIKDQCPVVAEPFIQWVLEDNFSDGRPPWELVGVQVVKDVDSYELMKLRLLNGG 311 VA G++D P++ EPF QWV+E++F GRP WE G V+DV ++E MKLRLLNG Sbjct: 237 AVASAMGLEDAWPIMTEPFRQWVIEEDFPLGRPAWEKAGALFVQDVSAFEFMKLRLLNGS 296 Query: 312 HSAMGYLGYLAGYTYIHEVVNDPTINKYIRVLMREEVIPLLPKVPGVDFEEYTASVLERF 371 HS + YLGYLAG + + + + + LMR EV P LP++PG D Y A +L+RF Sbjct: 297 HSTLAYLGYLAGAETVADAMALAGMEALVEGLMRHEVSPTLPELPGFDLPAYRAELLQRF 356 Query: 372 SNPAIQDTVARICLMGSGKMPKYVLPSIYEQLRKPDGKYKLLAVCVAGWFRYLTGVDMNG 431 NPA++ +I + GS K+P+ +L SI ++L+ G Y LA+ VA W RY G+D G Sbjct: 357 RNPALRHRTWQIAMDGSQKLPQRLLGSIRDRLQAGAG-YDRLALGVAAWMRYARGLDEAG 415 Query: 432 KPFEIEDPMAPTLKAAAVKGGKDPHEL----LNIEVLFSPEIRDNKEFVAQLTHSLETVY 487 +P ++ DP A + A +G +P + L + +F ++ + F A L +L+ + Sbjct: 416 RPIDVRDPHAARI-AGLARGIDEPDRIVDAFLTMTDVFGTDLPASAPFRAALIKALDGLL 474 Query: 488 DKGPIAAIK 496 G A ++ Sbjct: 475 RIGAAATLR 483 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 656 Number of extensions: 36 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 502 Length of database: 487 Length adjustment: 34 Effective length of query: 468 Effective length of database: 453 Effective search space: 212004 Effective search space used: 212004 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory