Align Mannitol 2-dehydrogenase; Short=M2DH; Short=MDH; EC 1.1.1.67 (characterized, see rationale)
to candidate SMc01501 SMc01501 mannitol 2-dehydrogenase
Query= uniprot:P33216 (477 letters) >FitnessBrowser__Smeli:SMc01501 Length = 494 Score = 532 bits (1370), Expect = e-155 Identities = 274/470 (58%), Positives = 325/470 (69%), Gaps = 3/470 (0%) Query: 8 PSYDRKALTPGIVHIGVGNFHRAHQAVYLDDLFALGEGHDWAILGAGVRPTDARMREALA 67 P+Y R L GIVH GVGNFHRAHQAVYLDDLF LG DWAI+GAGV P+D MR+ L Sbjct: 20 PNYGRHDLRAGIVHFGVGNFHRAHQAVYLDDLFNLGRDRDWAIIGAGVLPSDKVMRDKLE 79 Query: 68 AQDNLSTVIELDPAGHRARQVGAMVGFLPVEADNAALIEAMSDPRIRIVSLTVTEGGYYV 127 AQD L+TV+E D A GAM+ +L D A++ ++ P IRIVSLT+TEGGY++ Sbjct: 80 AQDFLTTVVEQDNNRTGAHVTGAMIAYLE-PGDTPAIVAQLASPLIRIVSLTITEGGYFI 138 Query: 128 D-ASGAFDPTHPDIVADAAHPARPATAFGAILAALRARRDAGVTPFTVMSCDNLPGNGHV 186 D ASG FDP HP IV DA PA P T FG ILA L RR G+ PFT+MSCDN+PGNG V Sbjct: 139 DPASGVFDPAHPAIVEDARDPAAPKTVFGLILAGLAERRAKGIPPFTIMSCDNIPGNGEV 198 Query: 187 TRNAVVGLAELYDAELAGWVKAQVAFPNGMVDRITPATGPHEREL-AQGFGLADPVPVTC 245 T AV GLA L D A W+ A VAFPNGMVDRITPATG E + A +G+ D PV C Sbjct: 199 THAAVSGLARLSDPGFADWIDANVAFPNGMVDRITPATGAREIGIVASQYGIDDAWPVFC 258 Query: 246 EPFRQWVIEDHFPAGRPALEKVGVTFTPHVHAYEAMKIRILNGGHAVIAYPSALMDIQLV 305 E F+QWV+ED FP GRPALE+VGV F P V YE MKIRILNGGHA IAYP+AL+DI V Sbjct: 259 EEFKQWVLEDRFPQGRPALEEVGVQFVPDVAPYEHMKIRILNGGHAAIAYPAALLDIHFV 318 Query: 306 HAAMAHPLIAAFLHKVEVEEILPHVPPVPDTSIPDYLTLIESRFSNPEIADTTRRLCLDG 365 H AM PLI AFL K+E +EI+P +PPVPDT + DY LIE+RFSNP+I DT RL DG Sbjct: 319 HEAMEEPLIRAFLSKLEHDEIIPVIPPVPDTDLKDYYKLIETRFSNPKIGDTVARLAQDG 378 Query: 366 SNRQPKFIVPSLRDNLAAGTVPKGLVLLSALWCRYCFGTTDSGVVVEPNDPNWTALQDRA 425 SNRQPKFI+PS D L G GL L+SALWCRY G +DSG + ND N L A Sbjct: 379 SNRQPKFILPSTADRLRRGEDVVGLSLVSALWCRYFAGKSDSGKEIVFNDANADRLHAAA 438 Query: 426 RRAKETPAEWLAMTEVYGDLAQNDLLAAEFAAALEAVWRDGAEAVLRRFL 475 AK+ P +LA+++++GD+AQ+DL FA AL+ +W G A L+ +L Sbjct: 439 VAAKDDPMAFLALSDIFGDVAQSDLFRRRFAHALKVLWEKGTRATLQLYL 488 Lambda K H 0.321 0.136 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 708 Number of extensions: 26 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 494 Length adjustment: 34 Effective length of query: 443 Effective length of database: 460 Effective search space: 203780 Effective search space used: 203780 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory