Align m-Inositol ABC transporter, ATPase component (itaA) (characterized)
to candidate SMc02325 SMc02325 ABC transporter ATP-binding protein
Query= reanno::pseudo3_N2E3:AO353_21385 (521 letters) >lcl|FitnessBrowser__Smeli:SMc02325 SMc02325 ABC transporter ATP-binding protein Length = 503 Score = 430 bits (1105), Expect = e-125 Identities = 216/488 (44%), Positives = 327/488 (67%) Query: 33 VSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRLRGKPVT 92 +SK FPGV ALSDV L + PGSV AL+GENGAGKSTL+KI+ GIYQPDAG +RL T Sbjct: 10 ISKSFPGVRALSDVSLALYPGSVTALVGENGAGKSTLVKILTGIYQPDAGTIRLGDTETT 69 Query: 93 FDTPLAALQAGIAMIHQELNLMPHMSIAENIWIGREQLNGFHMIDHREMHRCTAQLLERL 152 F T LAA +AG+ IHQE L +S+AENI++G N F +ID ++++ LL R Sbjct: 70 FPTALAASRAGVTAIHQETVLFDELSVAENIFLGHAPRNRFGLIDWKQLNADAQALLGRA 129 Query: 153 RINLDPEEQVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITDKEVAHLFSIIADLKA 212 + DP ++ +L IA++ +V IA+A+S D+ ++IMDEPT+A++ KE+ L+ +I LKA Sbjct: 130 GADFDPTIRLRDLGIAKKHLVAIARALSVDARVVIMDEPTAALSHKEIHELYDLIERLKA 189 Query: 213 QGKGIIYITHKMNEVFSIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGRELSQLFPVR 272 GK +++I+HK +E+F IAD VFRDGA IG + D L+ MMVGR + ++P + Sbjct: 190 DGKAVLFISHKFDEIFRIADRYTVFRDGAMIGEGLIADVSQDDLVRMMVGRAVGSVYPKK 249 Query: 273 EKPIGDLLMSVRDLRLDGVFKGVSFDLHAGEILGIAGLMGSGRTNVAEAIFGITPSDGGE 332 E IG +++V R F+ ++F+L GEILG GL+G+GR+ +++ GIT G Sbjct: 250 EVTIGQPVLTVSGYRHPTEFEDINFELRRGEILGFYGLVGAGRSEFMQSLIGITRPSAGA 309 Query: 333 ICLDGQPVRISDPHMAIEKGFALLTEDRKLSGLFPCLSVLENMEMAVLPHYAGNGFIQQK 392 + LDG+ + I P AI G + E+R G + + +N+ + L H + +GF++ Sbjct: 310 VKLDGEVLVIRSPAEAIRAGIVYVPEERGRQGAIIGMPIFQNVTLPSLSHTSRSGFLRLA 369 Query: 393 ALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVG 452 AL + +L ++ +L+Q + TLSGGNQQK ++A+WL T P+++ILDEPT+GID+G Sbjct: 370 EEFALAREYTSRLDLRAAALDQDVGTLSGGNQQKVVIAKWLATRPKVIILDEPTKGIDIG 429 Query: 453 AKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEGDLMGTLDRSEATQERVMQ 512 +KA ++ +S LA++G++VIM+SSE+PE++GMSDRV+VM EG + G +RSE T E++++ Sbjct: 430 SKAAVHAFMSELAAQGLSVIMVSSEIPEIMGMSDRVIVMREGRVAGRYERSELTAEKLVR 489 Query: 513 LASGMSVR 520 A+G+ + Sbjct: 490 AAAGIETQ 497 Lambda K H 0.321 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 622 Number of extensions: 28 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 503 Length adjustment: 35 Effective length of query: 486 Effective length of database: 468 Effective search space: 227448 Effective search space used: 227448 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory