Align Aspartate aminotransferase; AAT; AspAT; Putative 2-aminoadipate transaminase; Transaminase A; EC 2.6.1.1; EC 2.6.1.39 (characterized)
to candidate SMc04386 SMc04386 aspartate aminotransferase B protein
Query= SwissProt::P58350 (410 letters) >FitnessBrowser__Smeli:SMc04386 Length = 410 Score = 815 bits (2105), Expect = 0.0 Identities = 410/410 (100%), Positives = 410/410 (100%) Query: 1 MTINATVKEAGFQPASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVK 60 MTINATVKEAGFQPASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVK Sbjct: 1 MTINATVKEAGFQPASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVK 60 Query: 61 QAASDAIHRGETKYTALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMA 120 QAASDAIHRGETKYTALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMA Sbjct: 61 QAASDAIHRGETKYTALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMA 120 Query: 121 SLDPGDEVIIPTPYWTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLL 180 SLDPGDEVIIPTPYWTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLL Sbjct: 121 SLDPGDEVIIPTPYWTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLL 180 Query: 181 NSPSNPSGAAYSAADYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNR 240 NSPSNPSGAAYSAADYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNR Sbjct: 181 NSPSNPSGAAYSAADYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNR 240 Query: 241 TLTVNGVSKAYAMTGWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDF 300 TLTVNGVSKAYAMTGWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDF Sbjct: 241 TLTVNGVSKAYAMTGWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDF 300 Query: 301 LKERTESFQRRRDLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDF 360 LKERTESFQRRRDLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDF Sbjct: 301 LKERTESFQRRRDLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDF 360 Query: 361 CAYLLEDAHVAVVPGSAFGLSPFFRISYATSEAELKEALERIAAACDRLS 410 CAYLLEDAHVAVVPGSAFGLSPFFRISYATSEAELKEALERIAAACDRLS Sbjct: 361 CAYLLEDAHVAVVPGSAFGLSPFFRISYATSEAELKEALERIAAACDRLS 410 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 770 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 410 Length of database: 410 Length adjustment: 31 Effective length of query: 379 Effective length of database: 379 Effective search space: 143641 Effective search space used: 143641 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory