Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate SMa2213 SMa2213 aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >FitnessBrowser__Smeli:SMa2213 Length = 494 Score = 385 bits (988), Expect = e-111 Identities = 207/481 (43%), Positives = 290/481 (60%), Gaps = 7/481 (1%) Query: 39 IFINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDA 98 ++I+ +W S + TV+P T V G+ ED D+AV+AA AF G PW +M Sbjct: 9 MYIDGQWVAPASGEYIETVDPFTARPWALVPRGNAEDADRAVRAAHRAFSQG-PWGKMHP 67 Query: 99 SHRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHG 158 + RGR++ R A LIE LA +E DNG+ + + + + YYAG+ADK G Sbjct: 68 TERGRIIQRFAALIEEHADALADIEVRDNGR-LLAEMTHQIRYIPRWYHYYAGFADKIEG 126 Query: 159 KTIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTA 218 P D S++RHEP+GVC I+PWN PLL+ + K PALA GN +VMK AE T TA Sbjct: 127 TLHPCDKPALSFSRHEPLGVCVGIVPWNAPLLLFSLKAAPALAAGNTLVMKPAEFTSATA 186 Query: 219 LYVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSN 278 L + L+++AGFP GV+N+V G+GP G + +H V FTGST+ G + A + + Sbjct: 187 LKLMELVEKAGFPTGVINVVTGYGPEVGEPLVTHPLTRHVGFTGSTKTGAHLYSLA-AKD 245 Query: 279 LKRVTLELGGKSPNIIMSDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVER 338 +KRV+LELGGKSPNI+ DAD+D AV +F GQ C AGSR V I+DEF+E+ Sbjct: 246 VKRVSLELGGKSPNIVFGDADLDNAVRGVVGGIFGAVGQTCIAGSRLLVHRSIHDEFLEK 305 Query: 339 SVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGG----IAADR 394 K+ +G+P +T+ GP + QF+K+LGYI+ ++EGA+L+ GGG Sbjct: 306 LAVFTKTARIGDPRKVETQIGPIANSMQFEKVLGYIDIARREGAELILGGGRPDLEECGT 365 Query: 395 GYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDLD 454 GYFI+PT+F V + M IA+EE+FGPV+ + F EE + AN+S +GL A V+T D+ Sbjct: 366 GYFIEPTIFAGVSNDMRIAREEVFGPVLSAIVFDEPEEALAIANDSEFGLGAGVWTSDMR 425 Query: 455 KANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKVPQ 514 A +S+ L+AG+VWVN Y +PFGGYK SG GRE G G+ Y + K V + + Sbjct: 426 LALKMSERLEAGSVWVNTYRDISYTTPFGGYKKSGIGRENGVAGIYEYLQTKAVWLSTAE 485 Query: 515 K 515 + Sbjct: 486 E 486 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 642 Number of extensions: 27 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 494 Length adjustment: 34 Effective length of query: 483 Effective length of database: 460 Effective search space: 222180 Effective search space used: 222180 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory