Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate SMc02689 SMc02689 aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >FitnessBrowser__Smeli:SMc02689 Length = 502 Score = 374 bits (959), Expect = e-108 Identities = 217/488 (44%), Positives = 285/488 (58%), Gaps = 20/488 (4%) Query: 40 FINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDAS 99 FI EW + V+ + F P TG +C+VA D D++ A+ AA AA + W R + Sbjct: 18 FIGGEWREPVAGRYFDNTTPITGGTLCEVARSDAADIEIALDAAHAARE---KWGRTSTT 74 Query: 100 HRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGK 159 R +L ++A +E + LA ET DNGKP + D+ + + RY+A G Sbjct: 75 ERSNILMKIAARMEDNLELLARAETWDNGKPIRETMAADIPLAIDHFRYFAACIRAQEGS 134 Query: 160 TIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTAL 219 ID D +Y HEP+GV GQIIPWNFP+LM AWKL PALA GN VV+K AEQTP + L Sbjct: 135 IGEIDHDTVAYHFHEPLGVVGQIIPWNFPILMAAWKLAPALAAGNCVVLKPAEQTPGSIL 194 Query: 220 YVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNL 279 A LI + PPGV+NIV GFG AG +A+ + K+AFTG T GR+I A S NL Sbjct: 195 VWAELIGDL-LPPGVLNIVNGFGLEAGKPLATSPRIAKIAFTGETTTGRLIMQYA-SQNL 252 Query: 280 KRVTLELGGKSPNIIMSDAD------MDWAVEQAHFALF-FNQGQCCCAGSRTFVQEDIY 332 VTLELGGKSPNI +D D A+E FA+F NQG+ C SR VQE IY Sbjct: 253 IPVTLELGGKSPNIFFADVASEDDDFFDKALE--GFAMFALNQGEVCTCPSRALVQESIY 310 Query: 333 DEFVERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGG--- 389 D F+ER+V R ++ GNP D T G Q Q +KIL YI GK+EGA++L GGG Sbjct: 311 DRFMERAVKRVEAIRQGNPLDEATMIGAQASSEQLEKILAYIEIGKEEGAEVLTGGGRNV 370 Query: 390 IAAD--RGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAA 447 + D GY+++PTVF + M I +EEIFGPV+ + FKT E + AN++ YGL A Sbjct: 371 LEGDLSGGYYVKPTVFHG-HNRMRIFQEEIFGPVVSVTTFKTEAEALEIANDTLYGLGAG 429 Query: 448 VFTKDLDKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKT 507 V+++D ++ +A++AG VW NCY + A + FGGYK SG GRE + L Y + K Sbjct: 430 VWSRDANRCYRFGRAIEAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHKMMLDHYQQTKN 489 Query: 508 VTVKVPQK 515 + V K Sbjct: 490 MLVSYSPK 497 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 630 Number of extensions: 31 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 502 Length adjustment: 34 Effective length of query: 483 Effective length of database: 468 Effective search space: 226044 Effective search space used: 226044 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory