Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate SM_b20115 SM_b20115 dihydroxy-acid dehydratase
Query= BRENDA::Q1PAG1 (608 letters) >FitnessBrowser__Smeli:SM_b20115 Length = 573 Score = 207 bits (526), Expect = 1e-57 Identities = 159/518 (30%), Positives = 265/518 (51%), Gaps = 48/518 (9%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGME-LSL 126 +AI+++++D+ H ++H + +K+ + + AGG P + E+ ++ ++ Sbjct: 41 IAILNTWSDLNPCHAHFKHRIDDVKRGVLQ-------AGGFPVELPVQSLSESSLKPTTM 93 Query: 127 PSREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSGIS 186 R +A+ L + D A+++G CDK P L+MGA+ G LP IF+P GPM G Sbjct: 94 LYRNFLAMEAEELLRGHPIDGAVLMGGCDKTTPALVMGAISAG-LPMIFLPSGPMLRGHY 152 Query: 187 NKEK----ADVRQRYAEGKA---TREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGL 239 E +D + + E +A T E+ + E S G C +GTA+T + E +GL Sbjct: 153 KGEHLGSGSDAWKYWDERRAGTITDEQWIGVEEGIARSYGHCMTFGTASTMTAIAESLGL 212 Query: 240 HLPGASFVNPYTPLRDALTHEAAQQVTRLTKQSGNFTPIG--EIVDERSLVNSIVALHAT 297 LPGAS + ++ +++ + + +G +I+ E+S+ N+ AT Sbjct: 213 TLPGASSIPAADANHIRMSTRCGRRIVEMVHEK-----LGPEKIITEKSVANASAVAMAT 267 Query: 298 GGSTNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPNGKADI-NHFQAAGGMAFL 356 G STN +H+ A+A+ AG+ LT +D+ +S P ++++ P+GK + F AGG+ L Sbjct: 268 GCSTNAVVHLIAMARRAGVPLTLEDLDGISRTTPVIANIRPSGKQYLMEDFYYAGGLRAL 327 Query: 357 IRELLEAGLLHEDVNTVAGRGLSRYTQEPFLDNGKLVWRDGPIESLDENILRPVARAFSP 416 + E+ E LLH D TV+G L + + N +++RP++ Sbjct: 328 MAEMKE--LLHLDAMTVSGFPLGATLEGAEVHNS--------------DVIRPLSNPIYH 371 Query: 417 EGGLRVMEGNLGRG--VMKVSAVALQHQIVEAPAVVFQDQQDLADAFKAGELE--KDFVA 472 EG L V++GNL V+K SA + ++ E PA+VF ++ A +L+ D V Sbjct: 372 EGSLAVLKGNLAPDGCVVKPSACEERLRVHEGPALVFDSYPEMKAAIDDEDLDVTPDHVL 431 Query: 473 VMRFQGPRSN-GMPELHKMTPFLGVLQDRGFKVAL-VTDGRMSGASGKIPAAIHVSPEAQ 530 ++R GP+ GMPE M P + +G++ L ++D RMSG S +HV+PE+ Sbjct: 432 ILRNAGPKGGPGMPEWG-MLPIPKKILKQGYRDMLRISDARMSGTSYGA-CILHVAPESH 489 Query: 531 VGGALARVRDGDIIRVDGVKGTLELKVDADEFAAREPA 568 VGG L+ VR GDIIRVD T+++ VD + A R A Sbjct: 490 VGGPLSLVRTGDIIRVDVANRTIDMLVDEEILAMRRAA 527 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 795 Number of extensions: 47 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 573 Length adjustment: 37 Effective length of query: 571 Effective length of database: 536 Effective search space: 306056 Effective search space used: 306056 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory