Align Putative bacterial solute-binding protein 1 family (characterized, see rationale)
to candidate SMc03061 SMc03061 alpha-glucoside ABC transporter periplasmic-binding protein
Query= uniprot:A8LLL6 (452 letters) >lcl|FitnessBrowser__Smeli:SMc03061 SMc03061 alpha-glucoside ABC transporter periplasmic-binding protein Length = 458 Score = 563 bits (1450), Expect = e-165 Identities = 275/459 (59%), Positives = 329/459 (71%), Gaps = 8/459 (1%) Query: 1 MRHTLHASAAALALSAGMAGAGG-----HLAFTPGE-GEFNWDSYQAFAEATDLSGQDLS 54 M+ +L AA AL AG AG G L F PGE FNW S + F + DL GQ L+ Sbjct: 1 MKRSLLIGVAAFALLAGTAGLAGTAGAADLKFKPGEDSRFNWASLEEFKKGHDLKGQTLT 60 Query: 55 IFGPWLAGEADAFSNLVAFFNEATGANATYVGSDSLEQQIVIDAEAGSAPDLTVFPQPGL 114 IFGPW + F ++ A+F EATG Y S++ EQQIVID +AGS PD+ + PQPGL Sbjct: 61 IFGPWRGEDEALFKSVYAYFVEATGVELKYSSSENYEQQIVIDTQAGSPPDVAILPQPGL 120 Query: 115 ATTMAARGFLTPLPDGTDDWLRENYAAGQSWIDLGTYADGSGNDQLYGFFFNVNVKSLVW 174 +AA+G LTPL D T WL +NYAAGQSW+DL TY G LY F + ++VKSLVW Sbjct: 121 IADLAAKGLLTPLGDETKQWLLDNYAAGQSWVDLSTYNGKDGTSALYAFPYKIDVKSLVW 180 Query: 175 YIPENFEDFDYEVPETMEEFKALMDQMVEDGQTPLCVGLGSGGATGWPATDWVEDLMLRT 234 Y+PENFED YEVP+TMEE KAL +++ EDG+ P C+GLGSGGATGWPATDWVEDLMLRT Sbjct: 181 YVPENFEDAGYEVPKTMEELKALTEKIAEDGEKPWCIGLGSGGATGWPATDWVEDLMLRT 240 Query: 235 QPPEVYDAWVSNEMPFDDPRVVAAIEEYGSFTRNDDYVVGNANDTASVDFRESPLGLFAS 294 QP E YD WV NE+PF D V A+EE+G F RND +V G A AS DFR+SP GLF+S Sbjct: 241 QPAETYDKWVKNEIPFTDAAVTGALEEFGWFARNDAFVDGGAAAVASTDFRDSPKGLFSS 300 Query: 295 PPACMMHRQASFIPAYFPEGTELGEDADFFYFPAFE-EKDLGRPVLGAGTLFAITNENPA 353 PP C +H QASFIP++FPEG +GEDADFFY P +E +K+LG PVLGAGTL IT + PA Sbjct: 301 PPKCYLHHQASFIPSFFPEGKVVGEDADFFYMPPYESKKELGNPVLGAGTLAMITKDTPA 360 Query: 354 ASAFIEFLKTPFAHEIMMAQDGFLTPFKGANPAAYASDTLRGQGEILTNATTFRFDGSDL 413 A AFIEFLKTP AHE+ MAQ FLTP+K N Y + L+ QGEIL NATTFRFDGSDL Sbjct: 361 ARAFIEFLKTPIAHEVWMAQTSFLTPYKSVNVDVYGNPPLKKQGEILLNATTFRFDGSDL 420 Query: 414 MPGGVGAGTFWTGMVDYSSGAKSAADVASEIQASWESLK 452 MPG +GAG FWTGMVD+ G KS+ADVA+ +Q +W+S+K Sbjct: 421 MPGKIGAGAFWTGMVDF-VGGKSSADVAAGVQKAWDSIK 458 Lambda K H 0.317 0.134 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 808 Number of extensions: 45 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 452 Length of database: 458 Length adjustment: 33 Effective length of query: 419 Effective length of database: 425 Effective search space: 178075 Effective search space used: 178075 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory