Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate SMa2213 SMa2213 aldehyde dehydrogenase
Query= metacyc::MONOMER-15108 (486 letters) >lcl|FitnessBrowser__Smeli:SMa2213 SMa2213 aldehyde dehydrogenase Length = 494 Score = 357 bits (917), Expect = e-103 Identities = 194/462 (41%), Positives = 278/462 (60%), Gaps = 9/462 (1%) Query: 14 FIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALN-GPWKKMTANE 72 +IDG++V G+ + ++P T V G A + D AV+AA +A + GPW KM E Sbjct: 10 YIDGQWVAPASGEYIETVDPFTARPWALVPRGNAEDADRAVRAAHRAFSQGPWGKMHPTE 69 Query: 73 RIAVLRKVGDLILERKEELSVLESLDTGKP-TWLSGSID-IPRAAYNFHFFSDYIRTITN 130 R ++++ LI E + L+ +E D G+ ++ I IPR +H+++ + I Sbjct: 70 RGRIIQRFAALIEEHADALADIEVRDNGRLLAEMTHQIRYIPRW---YHYYAGFADKIEG 126 Query: 131 EATQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTPMTA 190 D AL+++ P+GV I PWN PLLL + K APALAAGNT+VMKPAE T TA Sbjct: 127 TLHPCDKPALSFSRHEPLGVCVGIVPWNAPLLLFSLKAAPALAAGNTLVMKPAEFTSATA 186 Query: 191 TVLAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASAAKT 250 L E+ AG P GV+N+V G+GP G L HP + FTG T TG + + AAK Sbjct: 187 LKLMELVEKAGFPTGVINVVTGYGPE-VGEPLVTHPLTRHVGFTGSTKTGAHLYSLAAKD 245 Query: 251 LKRLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEAFLEK 310 +KR+S ELGGK+PN++F D++LD + + F G+ C+ GSR+ V R ++ FLEK Sbjct: 246 VKRVSLELGGKSPNIVFGDADLDNAVRGVVGGIFGAVGQTCIAGSRLLVHRSIHDEFLEK 305 Query: 311 FVAKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGGKRP--EGLEK 368 TK +GDP +T++G + + +E+V GYI +A EG ++ GG RP E Sbjct: 306 LAVFTKTARIGDPRKVETQIGPIANSMQFEKVLGYIDIARREGAELILGGGRPDLEECGT 365 Query: 369 GYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVWTNDLR 428 GYF+EPTI G++ D R+ +EE+FGPV++ I FD EE L ND+ +GL A VWT+D+R Sbjct: 366 GYFIEPTIFAGVSNDMRIAREEVFGPVLSAIVFDEPEEALAIANDSEFGLGAGVWTSDMR 425 Query: 429 RAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGL 470 A +++ ++EAG VWVNT+ TPFGG K+SGIGRE G+ Sbjct: 426 LALKMSERLEAGSVWVNTYRDISYTTPFGGYKKSGIGRENGV 467 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 624 Number of extensions: 24 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 494 Length adjustment: 34 Effective length of query: 452 Effective length of database: 460 Effective search space: 207920 Effective search space used: 207920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory