Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate SMc04397 SMc04397 L-sorbosone dehydrogenase, NADP dependent protein
Query= metacyc::MONOMER-15108 (486 letters) >lcl|FitnessBrowser__Smeli:SMc04397 SMc04397 L-sorbosone dehydrogenase, NADP dependent protein Length = 504 Score = 358 bits (920), Expect = e-103 Identities = 189/471 (40%), Positives = 288/471 (61%), Gaps = 15/471 (3%) Query: 15 IDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALN-GPWKKMTANER 73 IDG++V +G+T + + P + A+ + A+ AA++A + GPW +MTA+ER Sbjct: 24 IDGQWVDGAEGRTIERVAPGHGVVVSRYQAAAKADAERAIAAARRAFDEGPWPRMTASER 83 Query: 74 IAVLRKVGDLILERKEELSVLESLDTGKPTW-----LSGSIDIPRAAYNFHFFSDYIRTI 128 +L + D+I R +EL+ L+++++GKP L+G+ DI R A + R + Sbjct: 84 SLILLRAADMIAARADELAFLDAVESGKPISQAKGELAGAADIWRYA------AALAREL 137 Query: 129 TNEA-TQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTP 187 + E+ + + L +R P+GV+ +I PWN P L+++ KL ALAAG T V+KP+ELT Sbjct: 138 SGESYNTLGEGTLGVVLREPIGVVSIITPWNFPFLIVSQKLPFALAAGCTTVVKPSELTS 197 Query: 188 MTATVLAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASA 247 + VL EI AGVP GVVN++ G GP AGA LT HP V+ +SFTG T G++ MA+A Sbjct: 198 ASTLVLGEILEAAGVPQGVVNIIVGTGPE-AGAPLTTHPHVDMVSFTGSTGIGQLTMANA 256 Query: 248 AKTLKRLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEAF 307 A+TLK++S ELGGKNP ++F D+NLDE I+ + ++ N GE C GSR+ + R E Sbjct: 257 AQTLKKVSLELGGKNPQIVFPDANLDEFIDAAVFGAYFNAGECCNAGSRLILHRDIAEEV 316 Query: 308 LEKFVAKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGGKRPEGLE 367 + + + ++ VGDP D +T+VGA+I+ +H +++ GY+ A EG I GG + L Sbjct: 317 TARIASLSAKVKVGDPLDPETQVGAIITPQHLQKIAGYVSSASNEGARIAHGGTTLD-LG 375 Query: 368 KGYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVWTNDL 427 G F+ PTI++ + + V +EE+FGPV++V+ F+ EE + N YGLSA VW+ D Sbjct: 376 MGQFMAPTILSAVRPEMAVAREEVFGPVLSVLTFEKTEEAIRIANSIDYGLSAGVWSRDF 435 Query: 428 RRAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSE 478 + ++ AG VW+NT+ PFGG +QSG+GRE G H+ E Y+E Sbjct: 436 DTCLTIGRRVRAGTVWMNTFMDGASELPFGGYRQSGLGRELGRHAVEDYTE 486 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 637 Number of extensions: 28 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 504 Length adjustment: 34 Effective length of query: 452 Effective length of database: 470 Effective search space: 212440 Effective search space used: 212440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory