Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate SMc02162 SMc02162 long-chain-fatty-acid--CoA ligase
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__Smeli:SMc02162 Length = 566 Score = 237 bits (604), Expect = 1e-66 Identities = 170/548 (31%), Positives = 261/548 (47%), Gaps = 22/548 (4%) Query: 25 PLIEQTIGAFFADMVARQPEREALVSVHQGRRYTYAQLQTEAHRLASALLGMGLTPGDRV 84 PL ++IG FF VA+ R A + G+ T++ L T + ++ + L +GL GDRV Sbjct: 31 PLTYRSIGEFFDHAVAQYSWRPAFTCM--GKALTFSDLNTHSAKIGAWLQSLGLAKGDRV 88 Query: 85 GIWSHNNAEWVLMQLATAQVGLVLVNINPAYRTAEVEYALNKVGCKLLVSMARFKTSDYL 144 + N + ++ + G +VN+NP Y E+E+ L G K + + F + Sbjct: 89 AVMMPNILQNPVIVYGILRAGFTVVNVNPLYTPRELEHQLVDAGAKAIFVLENFAHTVEQ 148 Query: 145 GMLRELAPEWQGQQPGHLQAAKLPQLKTVVWIDDEAGQGADEPGLLRFTELIARGNAADP 204 + R G + AK + VV + PG L F ++A+G Sbjct: 149 VLARTEVKHVVVASMGDMLGAKGAIVNLVVRRVKKLVPAWSIPGHLSFKTVLAKGATLGF 208 Query: 205 RLAQVAAGLQATDPINIQFTSGTTGFPKGATLTHRNILNN----GFFIGECMKLTPADR- 259 + VA G D +Q+T GTTG KGATLTH N+L+N ++ P Sbjct: 209 KRPNVAPG----DVAFLQYTGGTTGVSKGATLTHANLLSNMAQMELWLNTAFLRKPRPES 264 Query: 260 ---LCIPVPLYHCFGMVLGNL-ACFTHGATIVYPNDGFDPLTVLQTVQDERCTGLHGVPT 315 +C +PLYH F + + +L T G I+ PN P V + + R G+ T Sbjct: 265 LTFMCA-LPLYHIFALTVNSLMGLATGGNNILIPNPRDIPAFVKELGR-YRTNIFPGLNT 322 Query: 316 MFIAELDHPRFAEFNLSTLRTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSC 375 +F A +++ F + + S+L G V +R +E I YG++ETSPV+ Sbjct: 323 LFNALMNNSEFRKLDFSSLILTFGGGMAVQRPVAERWLELTGC-PIHEGYGLSETSPVAT 381 Query: 376 QSSTDTPLSKRVSTVGQVQPHLEVKIVDPDTGAVVPIGQRGEFCTKGYSVMHGYWGDEAK 435 + DT T+G P EV+I D D G +P+G+ GE C +G VM GYW + Sbjct: 382 ANRLDT--DDFTGTIGIPLPSTEVEIRDED-GRTLPVGEIGEICIRGPQVMAGYWQRPEE 438 Query: 436 TREAIDEGGWMHTGDLATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDV 495 T AI G+ TGD+ M+AEG IV R KDM++ G N++P EIEE HP + + Sbjct: 439 TARAISPDGFFRTGDVGFMNAEGLTKIVDRKKDMILVSGFNVFPNEIEEVAATHPGILEC 498 Query: 496 QVVGVPDQKYGEELCAWIIAKPGTQPTEDDIRAFCKGQIAHYKVPRYIRFVTSFPMTVTG 555 +GV D GE + +++ K TE++++ C + +YK PRY+ F T P + G Sbjct: 499 AAIGVADPHSGEAVKLFVVRK-DPNLTEEEVKRHCAASLTNYKRPRYVEFRTELPKSNVG 557 Query: 556 KIQKFKIR 563 KI + +R Sbjct: 558 KILRKDLR 565 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 775 Number of extensions: 38 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 566 Length adjustment: 36 Effective length of query: 542 Effective length of database: 530 Effective search space: 287260 Effective search space used: 287260 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory