Align Propionyl-CoA carboxylase beta chain; PCCase; Propanoyl-CoA:carbon dioxide ligase; EC 6.4.1.3 (characterized)
to candidate SM_b20755 SM_b20755 propionyl-CoA carboxylase subunit beta
Query= SwissProt::Q3J4E3 (510 letters) >FitnessBrowser__Smeli:SM_b20755 Length = 510 Score = 844 bits (2180), Expect = 0.0 Identities = 416/510 (81%), Positives = 458/510 (89%) Query: 1 MKDILQELENRRAIARAGGGQRRVEAQHKRGKLTARERIELLLDEGSFEEFDMFVRHRCT 60 M+ +L+++E RRA ARAGGG+RR+ AQH +GKLTARERI++LLDEGSFEE+DM+V HR Sbjct: 1 MRAVLEQVEARRAEARAGGGERRIAAQHGKGKLTARERIDVLLDEGSFEEYDMYVTHRSV 60 Query: 61 DFGMQDDRPAGDGVVTGWGTINGRMVYVFSQDFTVFGGSLSETHAQKICKIMDMAMQNGA 120 DFGM + GDGVVTGWGTINGR VYVFSQDFTV GGSLSETHAQKICKIMDMA +NGA Sbjct: 61 DFGMAGQKIPGDGVVTGWGTINGRQVYVFSQDFTVLGGSLSETHAQKICKIMDMAARNGA 120 Query: 121 PVIGLNDSGGARIQEGVASLAGYADVFQRNIMASGVIPQISVIMGPCAGGAVYSPAMTDF 180 PVIGLNDSGGARIQEGVASLAGYA+VF+RN SGVIPQISVIMGPCAGGAVYSPAMTDF Sbjct: 121 PVIGLNDSGGARIQEGVASLAGYAEVFRRNAEVSGVIPQISVIMGPCAGGAVYSPAMTDF 180 Query: 181 IFMVRDTSYMFVTGPDVVKTVTNEVVTAEELGGASTHTKKSSVADGAFENDVEALYEIRR 240 IFMVRD+SYMFVTGPDVVKTVTNE+VTAEELGGA THT KSSVADGA+END+EAL +R Sbjct: 181 IFMVRDSSYMFVTGPDVVKTVTNEIVTAEELGGARTHTTKSSVADGAYENDIEALEHVRL 240 Query: 241 LVDFLPLSNRTPAPVRPFFDDVARIEDSLDTLIPDNPNQPYDMKELILKIADEADFYEIQ 300 L DFLPL+NR PVRPF DD R+E LD+LIPD+ +PYDMKELIL IADEADF+E+Q Sbjct: 241 LFDFLPLNNREKPPVRPFHDDPGRLEMRLDSLIPDSAAKPYDMKELILAIADEADFFELQ 300 Query: 301 KDFAANIITGFIRLEGQTVGVVANQPMVLAGCLDIDSSRKAARFVRFCDAFNIPILTLVD 360 FA NIITGFIR+EGQTVGV+ANQPMVLAGCLDIDSSRKAARFVRFCDAF+IPILTLVD Sbjct: 301 ASFARNIITGFIRIEGQTVGVIANQPMVLAGCLDIDSSRKAARFVRFCDAFSIPILTLVD 360 Query: 361 VPGFLPGTGQEYGGVIKHGAKLLFAYGEATVPKVTVITRKAYGGAYDVMASKHLRGDFNY 420 VPGFLPGT QEYGGVIKHGAKLLFAY +ATVP VT+ITRKAYGGAYDVMASKH+ D NY Sbjct: 361 VPGFLPGTAQEYGGVIKHGAKLLFAYSQATVPMVTLITRKAYGGAYDVMASKHIGADVNY 420 Query: 421 AWPTAEIAVMGAKGATEILYRSELGDKEKIAARAKEYEDRFANPFVAAERGFIDEVIMPH 480 AWPTAEIAVMGAKGATEILYRSELGD KIAAR KEYE+RFANPFVAAERGFIDEVIMPH Sbjct: 421 AWPTAEIAVMGAKGATEILYRSELGDPAKIAARTKEYEERFANPFVAAERGFIDEVIMPH 480 Query: 481 STRRRVSKAFASLRNKKLANPWKKHDNIPL 510 S+RRR+++AFASLRNK++ W+KHD IPL Sbjct: 481 SSRRRIARAFASLRNKQVETRWRKHDTIPL 510 Lambda K H 0.321 0.138 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 906 Number of extensions: 25 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 510 Length adjustment: 34 Effective length of query: 476 Effective length of database: 476 Effective search space: 226576 Effective search space used: 226576 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory